
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329279396

AGGREGATE CLAIM ESTIMATION USING BIVARIATE HIDDEN MARKOV

MODEL

Article  in  Astin Bulletin · November 2018

DOI: 10.1017/asb.2018.29

CITATIONS

4
READS

373

3 authors:

Some of the authors of this publication are also working on these related projects:

Sample size determination project View project

Enhancing the Capacity of Turkey to Adapt to Climate Change - UNDP View project

Zarina Oflaz

KTO Karatay University

12 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Ceylan Yozgatligil

Middle East Technical University

41 PUBLICATIONS   563 CITATIONS   

SEE PROFILE

Sevtap Kestel

Middle East Technical University

66 PUBLICATIONS   266 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ceylan Yozgatligil on 02 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329279396_AGGREGATE_CLAIM_ESTIMATION_USING_BIVARIATE_HIDDEN_MARKOV_MODEL?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329279396_AGGREGATE_CLAIM_ESTIMATION_USING_BIVARIATE_HIDDEN_MARKOV_MODEL?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sample-size-determination-project?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enhancing-the-Capacity-of-Turkey-to-Adapt-to-Climate-Change-UNDP?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zarina-Oflaz?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zarina-Oflaz?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KTO_Karatay_University?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zarina-Oflaz?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ceylan-Yozgatligil?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ceylan-Yozgatligil?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Middle-East-Technical-University?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ceylan-Yozgatligil?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sevtap-Kestel?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sevtap-Kestel?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Middle-East-Technical-University?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sevtap-Kestel?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ceylan-Yozgatligil?enrichId=rgreq-ddd7c0ddc846b1422fea8dc7ea9c710b-XXX&enrichSource=Y292ZXJQYWdlOzMyOTI3OTM5NjtBUzo4MDk0NjIwMTMxMDgyMjRAMTU3MDAwMjE5MTIxMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


AGGREGATE CLAIM ESTIMATION USING BIVARIATE HIDDEN
MARKOVMODEL

BY

ZARINA NUKESHTAYEVA OFLAZ, CEYLAN YOZGATLIGIL AND
A. SEVTAP SELCUK-KESTEL

ABSTRACT

In this paper, we propose an approach for modeling claim dependence, with
the assumption that the claim numbers and the aggregate claim amounts are
mutually and serially dependent through an underlying hidden state and can
be characterized by a hidden finite state Markov chain using bivariate Hidden
Markov Model (BHMM). We construct three different BHMMs, namely
Poisson–Normal HMM, Poisson–Gamma HMM, and Negative Binomial–
Gamma HMM, stemming from the most commonly used distributions in
insurance studies. Expectation Maximization algorithm is implemented and
for the maximization of the state-dependent part of log-likelihood of BHMMs,
the estimates are derived analytically. To illustrate the proposed model, motor
third-party liability claims in Istanbul, Turkey, are employed in the frame
of Poisson–Normal HMM under a different number of states. In addition,
we derive the forecast distribution, calculate state predictions, and determine
the most likely sequence of states. The results indicate that the dependence
under indirect factors can be captured in terms of different states, namely low,
medium, and high states.

KEYWORDS

Claim estimation, bivariate Hidden Markov model, EM algorithm, Viterbi
algorithm, MTPL

1. INTRODUCTION

The fundamental objectives for insurance companies include safeguard pol-
icyholders against potential losses by apportioning the risk with others and
compensate the loss (Rocca, 2016). In order to be solvent over a certain
time horizon, an insurer must adequately price the premiums to be charged
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2 Z. NUKESHTAYEVA OFLAZ, C. YOZGATLIGIL AND A.S. SELCUK-KESTEL

and have sufficient amount of capital and reserves. Hence, predicting the
distribution of the total claim amounts in a given time period is important as
it is directly related to the equity and reserving requirements for an insurance
company (Bowers et al., 1997). The classical approach in modeling aggregate
claim amounts of the portfolio consisting of n insurance policies is to sum all
amounts payable during a certain time period. It is assumed that the number
of claims follows a particular discrete distribution and the monetary amount
of each claim follows a continuous distribution (Tse, 2009). Most actuarial
models rely on an assumption that both claim counts and aggregate claim
amounts are independent which yields nice outcomes analytically. However,
some conditions such as climate, economical, and financial factors affect the
claim-causing events, resulting in the interaction between the claim number and
the total claim amount distributions. Despite its simplicity and accessibility,
independence assumption is too restrictive under different frameworks.

The impact of dependencies between claims has gained increasing attention
in recent years (Äuerle and Müller, 1998; Denuit et al., 2002). For example,
Dhaene and Goovaerts (1997) state that some types of dependence between
individuals may produce the riskiest aggregate claims and cause the largest
stop-loss premiums. Sufficiently many studies have developed and applied
models with claim dependency assumption. In particular, models with depen-
dence among the reserving claim amounts (Hudecová and Pešta, 2013; Pešta
and Okhrin, 2014), serial dependence in claim counts (Avanzi et al., 2016),
and dependence between claim frequency and severity (Boudreault et al.,
2014; Garrido et al., 2016) have been explored. Furthermore, models assum-
ing the dependence among aggregate claims have also been widely studied
(Ambagaspitiya, 1999; Yuen et al., 2002; Wang and Yuen, 2005).

The main work of our study involves a novel approach for modeling
claim dependence, introducing bivariate Hidden Markov Model (BHMM).
In order to relax the assumption on serial independence of observations, we
allow the parameter process to be serially dependent. An optimal way is to
assume that the parameter process must satisfy the Markov property leading
to HMM due to its nature. HMMs have been applied in various fields, namely
speech recognition (Rabiner and Juang, 1993), molecular biology (Krogh
et al., 1994), analysis of DNA sequence (Cheung, 2004), and stock market
forecasting (Hassan and Nath, 2005). The main reason for selecting an HMM
for modeling the claim dependence is that unobservable background factors
triggering the claim-causing events can be characterized and captured by a
hidden parameter process. That seems both total claim amounts and claim
numbers may react similarly to some exogenous conditions, consequently,
resulting in dependence. This approach is also introduced and modeled where
unobservable information is described by exogenous variables, using fixed and
random effects models (Pinquet, 2000). Similarly, claim numbers and claim
amounts dependency is designed using approach based on Markov-switching
model (Ren, 2012). In claim modeling, HMM is considered to be a relatively
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AGGREGATE CLAIM ESTIMATION USING BHMM 3

new tool. For instance, Poisson HMM is used to model the dynamics of claim
counts in nonlife insurance (Paroli et al., 2000), while Badescu et al. (2016)
generate the intensity function of the claim arrival process by a HMM with
Erlang state-dependent distributions.

In this paper, we assume two conditional independence, namely contempo-
raneous and longitudinal. We assume that the claim counts and the aggregate
claim amounts are dependent and both are serially dependent via an underly-
ing hidden state. Multivariate HMM with these two conditional assumptions
is constructed. Also, the model is theoretically adopted to the bivariate series,
where one component is continuous and other is taken as discrete (Zucchini
and Guttorp, 1991; Zucchini and MacDonald, 2009). We propose and con-
struct three different BHMMs, under Poisson–Normal, Poisson–Gamma, and
Negative Binomial–Gamma distributions whose parameters are estimated
using EM algorithm. The conditions required to implement the EM are
proposed and analytically proved. The numerical illustrations are employed
to Turkish motor liability third party (MTPL) data for Istanbul province
collected monthly between years 2007 and 2009.

The organization of the paper is as follows: Section 2 includes a theoret-
ical framework for the claim modeling and HMM. Furthermore, we present
BHMM, and related definitions and theorems. Parameter estimation method
is introduced in Section 3. Next section includes decoding techniques. State
prediction and model selection are in Section 5. In Section 6, we establish three
different BHMMs. We apply Poisson–Normal BHMM to the vehicle insur-
ance claims data in Section 7. The conclusion summarizes the findings with the
remarks.

2. BIVARIATE HIDDEN MARKOV MODEL

A HMM assumes that process generating Nt depends on the hidden state Ct

which satisfies the Markov property. Therefore, an HMM can be determined
by hidden “parameter process” {Ct : t= 1, 2, . . .} and the “state-dependent
process” {Nt : t= 1, 2, . . .} satisfying (Zucchini and MacDonald, 2009)

P(Ct+1|Ct, . . .C1)=P(Ct+1|Ct), t= 2, 3, . . .

P(Nt|N(t−1),C(t))=P(Nt|Ct), t ∈N. (2.1)

Transition probability, γij(t), can be expressed as the probability of moving
from state i to state j at time t:

γij(t)=P(Ck+t = j|Ck = i).

If these probabilities do not depend on k, Markov chain is said to be homo-
geneous. Finite state-space homogeneous Markov chains fulfill the Chapman–
Kolmogorov equations (Zucchini and MacDonald, 2009). Probabilities of a
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4 Z. NUKESHTAYEVA OFLAZ, C. YOZGATLIGIL AND A.S. SELCUK-KESTEL

Markov chain being in a given state at a given time t can be defined by
unconditional probabilities:

u(t)= (P(Ct = 1), . . . ,P(Ct =m)) . (2.2)

Here, u(1) is considered as initial distribution of the Markov chain which
specifies the starting state. The initial distribution, u(1), and matrix of tran-
sition probabilities, γij(t), are necessary to construct a probability distribution
over sequence of observations. Additionally, the state-dependent distribution,
pi(n); i= 1, 2, . . . ,m, where m is the number of states, that defines the relation
between observation and an unobserved state is

pi(n)=P(Nt = n|Ct = i), i= 1, . . . ,m.

For continuous case, pi is defined to be the probability density function of Nt

if the Markov chain is in state i at time t. In case when an initial distribution,
u(1), is not supplied, Zucchini and MacDonald suggest to use an initial distri-
bution of a stationary Markov chain, δ, which can be found from Zucchini and
MacDonald (2009):

δ(Im − � +U)= 1, (2.3)

where Im is the m×m identity matrix, U is the m×m matrix of 1, and the row
vector of 1. Therefore, we use the calculated δ as the starting value for an initial
distribution of BHMM.

Let {Nt: t= 1, 2, . . .} denote the number of claims and {St: t= 1, 2, . . .} be
the aggregate claim amount reported by policyholders during t= 1, 2, . . .which
is expressed as

St =
Nt∑
i=1

Xi, (2.4)

where Xi denotes the ith claim amount.
Using BHMM in which unobservable background factor can be charac-

terized by hidden finite-state Markov chain under insurance claims setup, we
assume that Nt and St are mutually and serially dependent through an under-
lying hidden state {Ct: t= 1, 2, . . .}. We consider that the Markov chain of the
bivariate model is homogeneous and nonstationary. It is obvious that the claim
numbers Nt and St are reported at the same time, t; therefore, we collect the
information given by bivariate observations (St,Nk), t= k, as illustrated in
Figure 1.

Besides longitudinal conditional independence, that is, conditional on the
underlying hidden state {Ct: t= 1, 2, . . .} which refers to the claim counts at
time t and the aggregate amounts at time t is independent, we consider also
contemporaneous conditional independence as shown in Figure 2. These two
conditional independence assumptions neither imply the serial independence
of Nt and St nor the mutually independence of component series, concluding
that Nt and St are dependent, as stated in Zucchini and MacDonald (2009).
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AGGREGATE CLAIM ESTIMATION USING BHMM 5

FIGURE 1: Directed graph of BHMM (longitudinal).

FIGURE 2: Contemporaneous conditional independence in BHMM with two states Zucchini and
MacDonald (2009).

To specify the bivariate model, it is necessary to postulate a joint state-
dependent distribution of the pair (s, n) for t= 1, 2, . . . ,T , i= 1, 2, . . . ,m,
which is defined as

pi(st, nt)=P((St,Nt)= (st, nt)|Ct = i). (2.5)

According to the contemporaneous conditional independence, the state-
dependent probabilities are given by a product of the corresponding marginal
probabilities (Zucchini and Guttorp, 1991; Zucchini and MacDonald, 2009) as
follows:

pi(st, nt)=P
(
(St,Nt)= (st, nt)

∣∣Ct = i
)

=P(St = st|Ct = i)P(Nt = nt|Ct = i). (2.6)

3. PARAMETER ESTIMATION IN BHMM

To construct BHMM, we need to estimate transition probabilities, initial prob-
ability, and parameters of the joint state-dependent probabilities. Regarding
the complexity in likelihood function, EM (namely Baum–Welch) algorithm is
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6 Z. NUKESHTAYEVA OFLAZ, C. YOZGATLIGIL AND A.S. SELCUK-KESTEL

employed. EM which performs maximum likelihood estimation of parameters
having missing value in the data functions well in HMM estimation as the
hidden states are treated as missing information (Dempster et al., 1977;
Little and Rubin, 2014). In addition, the algorithm enables estimation of
the parameters of an HMM whose Markov chain is homogeneous but not
necessarily stationary (Zucchini and MacDonald, 2009). The EM algorithm
alternates between two phases. In the E-step, conditional expectations of the
hidden states that are treated as missing data, given the observed data and
a current estimate of the model parameters, are computed. In the M-step,
the complete-data log-likelihood (CDLL) function is maximized under the
assumption that the missing data are known. Iterations are repeated until a
convergence is satisfied (Little and Rubin, 2014). In order to maximize the
state-dependent part of CDLL of BHMMs, we establish and prove three
theorems (Theorems 1, 2, and 5.6).

The forward (αt) and the backward (β ′
t) probabilities are needed for the

maximization part of EM estimation (Rabiner, 1990). For t= 1, 2, . . . ,T ,

αt = δP(s1, n1)�P(s2, n2), . . . , �P(st, nt)= δP(s1, n1)
t∏

k=2

�P(sk, nk) (3.1)

and

β ′
t = �P(st+1, nt+1)�P(st+2, nt+2), . . . , �P(sT , nT )1′ =

(
T∏

k=t+1

�P(sk, nk)

)
1′

(3.2)
with βT = 1, define the forward and backward probabilities, respectively.

The CDLL of BHMM, that is, the log-likelihood of observed variables and
hidden states, is defined as (Zucchini and MacDonald, 2009)

log (P(s(T), n(T), c(T)))= log δc1 +
T∑
t=2

log δct−1,ct +
T∑
t=1

log pct(st, nt)

=
m∑
j=1

uj(1) log δj +
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)

)
log γjk

+
m∑
j=1

T∑
t=1

uj(t) log pj(st, nt),

(3.3)

where uj(t)= 1 if and only if ct = j,(t= 1, 2, . . . ,T); vjk = 1 if and only if ct−1 = j
and ct = k (t= 2, 3, . . . ,T).

In the E part of EM algorithm, vjk(t) and uj(t) are replaced by the condi-
tional expectations of being in a state j at time t given the observations s(T), n(T)

(Zucchini and MacDonald, 2009):
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AGGREGATE CLAIM ESTIMATION USING BHMM 7

ûj(t)=P
(
Ct = j

∣∣(S(T),N(T)
)= (

s(T), n(T)
) )= αt(j)βt(j)

LT
(3.4)

and

v̂jk(t)=P
(
Ct−1= j,Ct=k

∣∣(S(T),N(T)
)= (

s(T), n(T)
))= αt−1(j)γjkpk(st, nt)βt(k)

LT
,

respectively. The likelihood LT = u(1)P(s1, n1)�P(s2, n2)�P(s3, n3), . . . ,
�P(sT , nT )1′. On the other side, the M part maximizes the each term of CDLL
with respect to the related set of parameters, that is, the initial distribution u(1),
the transition probability matrix �, and the parameters of joint state-dependent
distributions. The CDLL of BHMM is found to require three separate
maximizations which are stated, as in Zucchini and MacDonald (2009):

1. Setting uj(1)= ûj(1)/
∑m

j=1 ûj(1)= ûj(1), maximize
∑m

j=1 uj(1) log δj with
respect to initial distribution u(1).

2. Setting γjk =∑T
t=2 vjk(t)/

∑m
k=1

(∑T
t=2 vjk(t)

)
,

maximize
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)

)
log γjk

with respect to �.
3. Depending on the nature of the assumed joint state distributions, the maxi-

mization of the third term can be performed analytically when closed-form
solutions are available, or numerical estimation will be required.

4. MODEL SELECTION

According to the likelihood of BHMM, the increasing number of states m
yields a better fit of the model, whereas it may cause a quadratic increase in
the number of parameters to be estimated. Consequently, a selection criteria
such as Akaike (AIC) and Bayesian (BIC) Information Criteria and the use of
pseudo-residuals are taken into account to determine the best fitting model.

Despite the fact that the model opted by AIC or BIC criterion is sup-
posed to select the most optimal model, we also wish to assess the goodness
of fit of the model in an absolute sense. An optimal way to do so is to
obtain pseudo-residuals, which are also able to identify outliers relative to the
model. In this aspect, we consider ordinary pseudo-residuals which are based
on the conditional distribution (Zucchini and MacDonald, 2009). The normal
pseudo-residual is defined as

zt = �−1
(
P(St ≤ st|S−t = s−t)

)
.

Pseudo-residuals are distributed as standard normal if the related model is
correct.
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8 Z. NUKESHTAYEVA OFLAZ, C. YOZGATLIGIL AND A.S. SELCUK-KESTEL

5. BHMM MODELS

In this study, we construct three different bivariate models. The details of
these models can be found in Oflaz (2016). These are Poisson–Normal HMM,
Poisson–Gamma HMM, and Negative Binomial–Gamma HMM. We also
introduce the theorems related to our models in order to maximize the third
term of CDLL of BHMM.

5.1. Poisson–normal HMM

We consider that Nt follows Poisson and St the normal distributions with
underlying unobservable stochastic process, Ct. A joint state-dependent
probability distribution for n ∈N, s ∈ (− ∞,+∞), λ > 0,μ, σ 2 is expressed as
follows:

pi(st, nt)= (2πσ 2
i )

− 1
2 e

− 1
2σ2i

(st−μi)2−λi λ
nt
i

nt!
. (5.1)

We derive the parameters of Poisson–Normal BHMM based on steps
explained earlier.

Theorem 1. Given two random variables, S and N having normal (μj, σ 2
j ) and

Poisson(λj) distributions, respectively, the EM estimates of joint state-dependent
distribution are (Oflaz, 2016)

λ̂j =
∑T

t=1 ûj(t)nt∑T
t=1 ûj(t)

,

μ̂j =
∑T

t=1 ûj(t)st∑T
t=1 ûj(t)

,

σ̂ 2
j =

∑T
t=1 ûj(t)(st − μ̂j)2∑T

t=1 ûj(t)
. (5.2)

Here, ûj(t) is given in Equation (3.4). These estimates are consistent with the ones
given by Zucchini and MacDonald (2009).

The Proof of Theorem 1 is summarized in the Appendix.

5.2. Poisson–gamma HMM

Similarly, having the marginal distributions for Nt Poisson and for St Gamma,
the joint state-dependent distribution, for n ∈N, s> 0, λ > 0, α > 0, β > 0, is
given by
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pi(st, nt)= β
αi
i s

αi−1
t λ

nt
i e

−βist−λi

�(αi)nt!
. (5.3)

We derive the parameter estimates of BHMM with Poisson–Gamma
assumptions.

Theorem 2. Given two random variables, S and N having Gamma(αj, βj) and
Poisson(λj) distributions, respectively, the EM estimates of joint state-dependent
distribution are found as (Oflaz, 2016)

λ̂j =
∑T

t=1 ûj(t)nt∑T
t=1 ûj(t)

,

β̂j = α̂j
∑T

t=1 ûj(t)∑T
t=1 st

. (5.4)

ûj(t) is given in Equation (3.4). To estimate α̂j numerical maximization is required
(Equation (A.2) in the Appendix).

The proof of the theorem is given in the Appendix.

5.3. Negative Binomial–Gamma HMM

The state-dependent distribution is of the form

pi(st, nt)=
(ni−1
ri−1

)
β

αi
i s

αi−1
t e−βistprii (1− pi)nt−ri

�(αi)
(5.5)

for n ∈N, s> 0, r> 0, p ∈ (0, 1), α > 0, β > 0.

Theorem 3. Given two random variables, S and N having Gamma (αj, βj) and
Negative Binomial (rj, pj) distributions, respectively, the EM estimates of joint
state-dependent distribution are derived as (Oflaz, 2016)

β̂j = α̂j
∑T

t=1 ûj(t)∑T
t=1 st

,

p̂j = r̂j
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − r̂j)+ r̂j

∑T
t=1 ûj(t)

. (5.6)

The parameter estimates of α̂j and r̂j require numerical maximization, whose
derivations are presented in the Appendix (Equations (A.4) and (A.7),
respectively).
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6. CASE STUDY: MOTOR THIRD-PARTY LIABILITY CLAIMS

The implementation of BHMM model under the dependence assumption
between claim numbers and the total claim amounts is performed to the
MTPL data collected from Turkish insurance sector. According to the Turkish
Insurance Market Outlook 2016–2017, having greater share in total premium
(25.5%), MTPL is one of the most accounted insurance business line in Turkey
(JLT Sigorta ve Reasurans Brokerligi A.S., 2017). The growth of MTPL busi-
ness is about 35% from 2014 (JLT Sigorta ve Reasurans Brokerligi A.S., 2017)
resulting also (30%) increase in the loss ratio in 5 years from 2010 (Garanti
Securities, 2016). The recent regulations and reforms require insurance com-
panies to allocate sufficient reserves for the claims which appear highly from
MTPL losses. For this reason, insurance companies are in seek of methods
yielding good estimates on their future losses.

The insurance companies are required by regulation to report the policy-
based information every year to the Insurance Information Center (Turkish
synonym SBM) which does have separate sections for each line of businesses.
Traffic Insurances Information and Monitoring Center (TRAMER) is the
section which collects and processes the MTPL and Casco details. The data
set used in this paper is provided by TRAMER which contains the vehicle
insurance recordings from Istanbul in Turkey.

6.1. Data processing

The data set includes information on the policies written in Istanbul where
the policies starting years vary between the years 2006 and 2009 having the
accident years varying from 2006 to 2011. Every policy registered to the system
includes coded policy number, starting and end dates of policy, vehicle tariff
group code (car, minibus, taxi, etc.), registered city code, vehicle ID number,
vehicle age, usage type (private, commercial), passenger capacity, nationality
of insured, damage date, claim reason, and individual claim amount. The data
set were not available and accessible after 2011. As Istanbul has the highest
rate of insurance penetration position compared to other cities in Turkey, we
expect it to capture the model better.

In data processing we go through each claim records and tabulate the result-
ing outputs to detect the appropriate set of data over years. Table 1 provides
the total number of claims and aggregate claim amount for each year. It can
be noticed that not all years enable us sufficient data to be processed, the ones
which are taken into account in this study are marked as bold.

As a result of data processing we utilize the monthly information on
automobile insurance portfolios from Istanbul over the period January 2007–
December 2009, which has only nonzero claims. For convenience, we refer to
the monthly total number of claims and the monthly aggregate claim amounts
as the claim numbers and the total claim amounts, respectively. The individual
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TABLE 1

MONTHLY TOTAL CLAIM NUMBERS AND AGGREGATE CLAIM AMOUNTS (TL) BETWEEN 2006 AND 2011.

Accident year

Policy start 2006 2007 2008 2009 2010 2011

2006 196,046 191,902 314 128 12 NA
Claim no. 2007 NA 187,360 199,467 239 31 NA

2008 NA NA 198,368 210,612 276 12
2009 NA NA NA 204,166 196,746 59

2006 290,861,223 257,040,552 444,279 132,221 9098 NA
Aggregate claim amount (TL) 2007 NA 290,537,933 291,431,736 505,044 51,846 NA

2008 NA NA 320,698,956 337,879,194 543,344 21,553
2009 NA NA NA 502,834,660 336,400,909 207,676
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TABLE 2

DESCRIPTIVE STATISTICS OF MONTHLY AGGREGATE CLAIM AMOUNTS (TL) AND NUMBERS.

Mean Median Minimum Maximum St. dev Mode

Total claim 46,957,468 47,367,916 38,844,907 55,226,741 3,811,343 46,957,470
amount

Claim no. 22,481.31 22,173 19,429 25,316 1612.77 21,550

FIGURE 3: ACF plots of total claim amounts and numbers.

claim amounts are inflation adjusted with respect to the rates for the years 2008
(9.67%) and 2009 (6.21%) (Inflation rates, 2016). The claim amounts less than
250 TL (1USD = 1.537 TL in January 2011) are taken as deductible as the
contribution of these observations is found to be insignificant on the whole set.

The summary statistics, the scatter plots, and furthermore, autocorrelations
of the total claim amounts and numbers are analyzed as the first step in the
data description. Table 2 exposes that the mean, mode, and median values of
the total claim amounts are almost equal that is indicative for a symmetric dis-
tribution. We observe that the total claim amounts are accumulated between
44 and 52 billion TL. Moreover, the Shapiro–Wilk (SW) normality test indi-
cates that the total claim amounts are normally distributed with p-value of
0.8414. The summary statistics of the claim numbers infers that the data follow
a right-skewed distribution.

Significant spikes in the graphs of autocorrelation functions (ACF) detect
the presence of serial dependence in both variables (Figure 3). Additionally,
we check the stationarity of both series by performing Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test and Augmented Dickey–Fuller (ADF) test. The
results of KPSS conclude the nonstationarity of total claim amounts and claim
numbers (p< 0.01). ADF test is performed for claim numbers (p= 0.3986)
and total claim amounts (p= 0.2081) resulting in rejecting stationarity in both
series.

6.2. BHMM fitting and analyses

Although the total claim amounts distribution in literature is not commonly
taken as normal, the theory developed on HMM concentrates mostly on the
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AGGREGATE CLAIM ESTIMATION USING BHMM 13

TABLE 3

THE SELECTION CRITERIA FOR THE BEST FITTING POISSON–NORMAL HMM.

No. of No. of
states parameters log-likelihood AIC BIC

1 4 −656.00 1320.02 1326.35
2 10 −534.22 1088.44 1104.28
3 18 −501.39 1038.77 1067.28
4 28 −500.04 1056.07 1100.41
5 40 −498.83 1077.67 1141.01
6 54 −498.12 1104.24 1189.75

FIGURE 4: Poisson–Normal BHMM fit criteria for different state numbers.

Poisson distribution and normal distribution (Zucchini and Guttorp, 1991;
Zucchini and MacDonald, 2009; Dias and Ramos, 2014). On the other hand,
goodness-of-fit tests on the claim data support the assumption on normality.
For this reason, the case study is applied to the Poisson–Normal BHMM. The
iterative procedure of the algorithm is implemented in R. For calculation sim-
plicity and convenience, the total claim amounts and the claim numbers are
adjusted by 1000 and 100, respectively.

Poisson–Normal HMMs fit with respect to one to six states using EM
algorithm are performed. The goodness-of-fit results in Table 3 show that the
one-state model has the weakest fit to the insurance data. Despite an increasing
number of states gives a better result for log-likelihood, yet it demands more
parameters to estimate. Therefore, based on both AIC and BIC values, the
model with three states is chosen to be the most suitable, compared to other
choices (Figure 4).

The initial values of the off-diagonal transition probabilities are arbitrar-
ily taken to be 0.1. As the starting values of the state-dependent means we
use the lower quartile, the median quartile, and upper quartile of the observa-
tions, which are found to be for claim counts as (212.8, 222, 239), respectively.
Similarly, these three starting values for the total claim amounts of quartiles
are (44, 590, 47, 370, 48, 440), respectively. However, it is challenging to find
an optimal initial value for σ . Hence, we perform EM estimation with sev-
eral starting values and select the ones that give the maximum log-likelihood,
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14 Z. NUKESHTAYEVA OFLAZ, C. YOZGATLIGIL AND A.S. SELCUK-KESTEL

FIGURE 5: Marginal distributions of three-state Poisson–Normal HMM: (a) total claim amounts and
(b) claim numbers.

leading us to the values (5000, 2000, 1300) as initial ones. Based on these, we
estimate the transition probability matrix of three-state model as follows:

� =
⎛
⎝0.7010 0.1961 0.1029
0.1213 0.8217 0.0570
0.2899 0.0000 0.7101

⎞
⎠.

The transition probability matrix displays that the insurance claims are likely
to remain in the same state. According to the probabilities of moving between
the other states, it is most likely to shift from third state to the first with prob-
ability 0.289. The movement from state 1 to state 2 is likely with probability
0.196. The probability of transition between the other states is fairly small.
Furthermore, it is extremely unlikely for the insurance claims to move from
state 3 to state 2.

We find the estimated initial probabilities of the model as u(1)= (0.8565,
0.1405, 0.0030), the parameters of joint state-dependent distribution as λ̂ =
(218.8, 223, 243.7), μ̂ = (45799.45, 46991.43, 49617.07), and σ̂ = (5020.22,
2022.55, 2092.90). The estimated log-likelihood is l = −501.387. The marginal
distributions are displayed with histograms in Figure 5.

The stationary distribution of three-state Poisson–Normal HMM is com-
puted using Equation (2.3) and taken as the starting value of initial distribu-
tion, u(1).

We observe that the shape of the conditional distributions may change sig-
nificantly from one time point to another, which is quoted to the fact that some
of the observations are extreme relative to their conditional distributions. The
conditional distribution of the total claim amounts and numbers in February
2007, December 2008, and March 2009, given all the other observations, is
compared with the actual values in the related month which are marked with
a triangle symbol (Figure 6) corresponding to the actual total claim amount in
that month. This justifies that employing the conditional distributions to check
outliers is reasonable in our case. Regarding the residual plots (Figure 7, upper
row), it is obvious that the selected model provides an optimal fit to the data.
In addition, we apply SW normality test to pseudo-residuals, which confirms
normality assumption (p-value 0.6546 for claim numbers, 0.4537 for total claim
amounts) verified by Q–Q plots of pseudo-residuals (Figure 7, bottom row).
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AGGREGATE CLAIM ESTIMATION USING BHMM 15

FIGURE 6: Conditional distributions for certain months (in brackets) given other observations:
(a) total claim amounts and (b) claim numbers.

FIGURE 7: The graph of ordinary pseudo-residuals with certain confidence levels and their Q–Q plots:
(a) total claim amounts and (b) claim numbers.
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For the fitted three-state Poisson–Normal HMM, we derive state probabil-
ities that are necessary for performing local decoding. Utilizing Figure 8, we
are interested in defining hidden states that are most probable to have given
rise to the sequence of observed values. We conduct local and global decod-
ing both for total claim amounts and claim numbers to derive the most likely
sequence of states by employing Viterbi algorithm. The theoretical inferences
on the state probabilities, state prediction, global, and local decoding are given
in Zucchini and MacDonald (2009).

Observing Figures 8 and 9, we state that:

(i) From January 2007 to April 2007 the total claim amounts and claim num-
bers were in state 1. Afterwards, the insurance claims went into state 2 and
lasted for about 9 months (May 2007 to January 2008).

(ii) In February 2008, the claims went back to state 1 and remained there
until April 2008. Notably, that in January 2008, the probabilities of being
in state 1 (0.478) and state 2 (0.462) are fairly close to each other. It also
confirms the difference of global and local decoding results in January
2008.

(iii) According to Figure 8, from May 2008 to January 2009, the highest state
probabilities were in state 2. Once again, we notice that the local and
global decoding present different results in February 2009 and April 2009.
According to the local decoding the claims are in state 1 in February
2009, then switch to state 2 in the next month, and move to state 3 in
April 2009. On the other hand, the global decoding results state that the
claims remain in state 2 for almost 1 year from May 2008 to April 2009.

(iv) From May 2009 during 2 months the claims are in state 3, then those
switch to state 1 and stay there until September 2009 and went back to
state 3, remaining there until the end of 2009.

In order to analyze the nature of three states, we derive the claim severity
for each month, which is the rate of total claim amounts and claim numbers,
the results are presented in Table 4. We use the result of local decoding since
it could capture the seasonal behavior of the claims during 2007 and 2008. We
group the claim severity according to the local decoding results and derive the
mean value of claim severity values in each state, whose results are in Table 5.

Based on these severity results, we assign state definitions as follows:

(i) State 3 presents the lowest mean value of the claim severity; thus, we call
state 3 as the low state.

(ii) State 2 shows the highest mean value; therefore, it is named as the high
state.

(iii) State 1 is called as the medium state.

We suppose that there is a seasonal impact on the insurance claims, since the
local decoding shows that from January to April the claims were in the medium
state, and fromMay to January the claims were in the high state during 2 years.
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AGGREGATE CLAIM ESTIMATION USING BHMM 17

FIGURE 8: State prediction fitted three-state Poisson–Normal HMM: (a) state probabilities and
(b) state prediction.

In 2009, the claims behave differently in comparison with previous 2 years,
moving to the low state. The low state is characterized by the high total claim
amounts and, at the same time, by the high claim numbers, resulting at the
lowest claim severity.

Additionally, we obtain state probabilities for 3 years ahead that can be
used for analysis of further claim behavior. We interpret that in the beginning
of 2010, the observations will be dependent on the low state and the following
few months those will continue with the medium state; during 2 years the
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TABLE 4

CLAIM SEVERITY (TL) BETWEEN JANUARY 2007 AND DECEMBER 2009.

Month Claim severity Month Claim severity

January 2007 2110.584 July 2008 2145.219
February 2007 2090.200 August 2008 2138.817
March 2007 1992.717 September 2008 2191.086
April 2007 1980.344 October 2008 2082.565
May 2007 1968.840 November 2008 2050.662
June 2007 2023.900 December 2008 2317.509
July 2007 2117.023 January 2009 2018.179
August 2007 2234.867 February 2009 2056.964
September 2007 2065.220 March 2009 2016.932
October 2007 2285.005 April 2009 1927.231
November 2007 2115.018 May 2009 2032.901
December 2007 2370.503 June 2009 2036.394
January 2008 2243.221 July 2009 2263.113
February 2008 2097.330 August 2009 2154.857
March 2008 1877.836 September 2009 2217.261
April 2008 1943.056 October 2009 2033.440
May 2008 1977.718 November 2009 2071.967
June 2008 2009.525 December 2009 1992.269

FIGURE 9: Local and global decoding for three-state Poisson–Normal case: (a) claim amounts and
(b) claim numbers.

medium and high states have almost equal probabilities and are dominant
compared to the low state, based on Figure 8.

Four forecast distributions for total claim amounts and claim numbers are
displayed in Figure 10 for the times January 2010, March 2010, June 2010,
and August 2011. The distributions are compared with the limiting distribu-
tions, that is, the marginal distributions of the Poisson–Normal HMM. It is
clear that the forecast distributions approach the limiting distribution shown
with continuous (red) line in the graphs. These results are found based on the
theoretical framework given earlier (Zucchini and MacDonald, 2009).
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TABLE 5

MEAN OF CLAIM SEVERITY IN THREE STATES.

Mean of the claim severities

State 1 2073.440
State 2 2118.255
State 3 2033.394

FIGURE 10: Forecast distributions for four periods: (a) total claim amounts and (b) claim numbers (red line
is limiting distribution).

7. CONCLUSION

It is proposed to illustrate BHMM capturing the claim dependence, which
allows claim numbers and aggregate claim amounts to be mutually and seri-
ally dependent through an underlying hidden state. We modify and derive the
classical HMM definitions and theorems to the bivariate case. Three different
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models, Poisson–Normal HMM, Poisson–Gamma HMM, and Negative
Binomial–Gamma HMM are studied and their parameter estimates are
derived. For parameter estimation of the model, we conduct EM algorithm
which requires also further analytical modification. We utilize an algorithm
with required derivations which maximizes the state-dependent part of CDLL
of the proposed models. Real-life application of the proposed model is applied
on MTPL data collected from Turkish insurance sector (Istanbul) to examine
the performance of our model. Three-state Poisson–Normal HMM is selected
as the most suitable model whose results are used to determine forecast dis-
tributions both for claim numbers and for total claim amounts and perform
state prediction. According to the local and global decoding results, we deter-
mine the claim dependency on low, medium, and high states, which allows us
to estimate claim severity based on the dependence level.

The main advantage of the model is a flexibility in a sense of accommodat-
ing different types of data, such as modeling a bivariate series with one discrete
and one continuous variable. Moreover, the proposed model is applicable in
various fields of life and nonlife insurance, where the serial dependence and
mutual dependence among observations exist. Remarkably, that information
provided by the model, such as the most likely sequence of hidden states, can
be used for further analysis by the specialists allowing them to distinguish the
character of events or factors influencing the claim behavior.
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APPENDIX

The proofs of Theorems 1–3 are given in this part.

Proof of Theorem 1. The joint state-dependent probability for the Poisson–Normal HMM
is given by

pj(st, nt)= (2πσ 2
j )

− 1
2 e

− 1
2σ2j

(st−μj)2−λj λ
nt
j

nt!
st ∈ (− ∞,∞), nt ∈N.

M step of EM algorithm requires the maximization of the state-dependent part of the
CDLL:

m∑
j=1

T∑
t=1

ûj(t) log pj(xt, nt) (A.1)

with respect to the parameters of the joint state-dependent distribution. ûj(t) is given in
Equation (3.4).

The state-dependent part of the CDLL for the Poisson–Normal bivariate HMM is
defined as follows:

lnL=
T∑
t=1

ûj(t)

[
−1
2
log (2πσ 2

j )−
(st − μj)2

2σ 2
j

− λj + nt log λj − log (nt!)

]
.

Maximizing values of the state-dependent parameters λj ,μj , and σ 2
j can be computed by

setting the derivative to zero with respect to corresponding parameters:

dlnL
dλj

=
T∑
t=1

ûj(t)
[
−1+ nt

λj

]
= 0

and hence that

λ̂j =
∑T

t=1 ûj(t)nt∑T
t=1 ûj(t)

. (A.2)
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Maximization of the state-dependent part of CDLL with respect to μj proceeds as follows:

dlnL
dμj

=
T∑
t=1

ûj(t)

[
st
σ 2
j

− μj

σ 2
j

]
= 0,

then

μ̂j =
∑T

t=1 ûj(t)st∑T
t=1 ûj(t)

.

Analogously for σ 2
j :

dlnL

dσ 2
j

=
T∑
t=1

ûj(t)

[
− 1

2σ 2
j

+ (st − μj)2

2(σ 2
j )

2

]
= 0,

then,

T∑
t=1

ûj(t)
(st − μj)2

2(σ 2
j )

2
=

T∑
t=1

ûj(t)
1

2σ 2
j

,

and hence that

σ̂ 2
j =

∑T
t=1 ûj(t)(st − μ̂j)2∑T

t=1 ûj(t)
. (A.3)

For confidence that the estimated parameters maximize the state-dependent part of CDLL,
we check second derivatives of F with respect to parameters:

d2 lnL

dλ2j

∣∣∣∣∣
λj=λ̂j

= −
T∑
t=1

ûj(t)
nt
λ2j

∣∣∣∣∣
λj=λ̂j

< 0,

since nt > 0 and ûj(t)= {0, 1} by definition. It is obvious that the following satisfies:

d2 lnL

dμ2
j

∣∣∣∣∣μj=μ̂j = −
T∑
t=1

ûj(t)
1

σ 2
j

∣∣∣∣∣
μj=μ̂j

< 0.

Finally, we check the second derivative of F with respect to σ 2
j :

d2 lnL

dσ 2
j

∣∣∣∣∣
σ 2
j =σ̂ 2

j

=
T∑
t=1

ûj(t)

[
− 1

2σ 2
j

+ (st − μj)2

2(σ 2
j )

2

]∣∣∣∣∣
σ 2
j =σ̂ 2

j

= σ 2
j
∑T

t=1 ûj(t)− 2
∑T

t=1 ûj(t)(st − μj)2

2(σ 2
j )

3

∣∣∣∣∣
σ 2
j =σ̂ 2

j

.
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It is sufficient to prove that

σ 2
j

T∑
t=1

ûj(t)− 2
T∑
t=1

ûj(t)(st − μj)2
∣∣∣∣∣
σ 2
j =σ̂ 2

j

< 0.

Transforming the above expression, we derive:

σ 2
j − 2

∑T
t=1 ûj(t)(st − μj)2∑T

t=1 ûj(t)

∣∣∣∣∣
σ 2
j =σ̂ 2

j

=
∑T

t=1 ûj(t)(st − μj)2∑T
t=1 ûj(t)

− 2
∑T

t=1 ûj(t)(st − μj)2∑T
t=1 ûj(t)

= −
∑T

t=1 ûj(t)(st − μj)2∑T
t=1 ûj(t)

< 0. �

Proof of Theorem 2. The joint state-dependent probability for the Poisson–Gamma HMM
is given by

pj(st, nt)=
β

αj
i s

αj−1
t λ

nt
j e

−βj st−λj

�(αj)nt!
st > 0, n ∈N

and the state-dependent part of CDLL:

lnL=
T∑
t=1

ûj(t)
[
αj log βj + (αj − 1) log st + nt log λj − log �(αj)

− log (nt!)− βjst − λj
]
.

Maximizing values of the state-dependent parameters λj ,μj , and σ 2
j can be computed by

setting the derivative to zero with respect to corresponding parameter:

dlnL
dλj

=
T∑
t=1

ûj(t)
[
−1+ nt

λj

]
= 0

and hence that

λ̂j =
∑T

t=1 ûj(t)nt∑T
t=1 ûj(t)

.

Analogously for βj:

dlnL
dβj

=
T∑
t=1

ûj(t)
[

αj

βj
− st

]
= 0,

and hence that

β̂j = αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

.
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Maximization of the state-dependent part of CDLL with respect to αj proceeds as follows:

dlnL
dαj

=
T∑
t=1

ûj(t)
[
− d
dαj

log �(αj)+ log βj + log st

]
= 0,

then replacing βj by β̂j , we get

d lnL
dαj

=
T∑
t=1

ûj(t)

[
− d
dαj

log �(αj)+ log
αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

+ log st

]
= 0 (A.4)

In order to estimate the above equation, numerical maximization is required.
Finally, we check the second derivatives of F with respect to the parameters. For λj , see

Proof of Theorem 1:

d2 lnL

dα2
j

∣∣∣∣∣
αj=α̂j

= −
T∑
t=1

ûj(t)
d2

dα2
j

log �(αj)

∣∣∣∣∣
αj=α̂j

< 0,

since the trigamma function, defined as the sum of the series, is positive:

d2

dα2
j

log �(αj)=
∞∑
k=0

1
(αj + k)2

> 0.

Finally, we check the second derivative of F with respect to β2
j :

d2 lnL

dβ2
j

∣∣∣∣∣
βj=β̂j

= −
T∑
t=1

ûj(t)
αj

β2
j

< 0,

since αj > 0. �

Proof of Theorem 3. The joint state-dependent probability for the Negative Binomial–
Gamma HMM is given by

pj(st, nt)=
(nj−1
rj−1

)
β

αj
j s

αj−1
t e−βj st p

rj
j (1− pj)nt−rj

�(αj)
st > 0, n ∈N

and the state-dependent part of CDLL:

lnL=
T∑
t=1

ûj(t) log pj(st, nt)=
T∑
t=1

ûj(t)
[
log

(
nj − 1
rj − 1

)
+ αj log βj + (αj − 1) log st

− βjst + rj log pj + (nt − rj) log (1− pj)− log �(αj)
]
. (A.5)

Estimation of the parameters, αj and βj , and the second derivative of F with respect to
the mentioned parameters are provided in the Proof of Theorem 2. In the following, the
derivation of p̂j and r̂j is shown:
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dlnL
dpj

=
T∑
t=1

ûj(t)
[
rj
pj

− nt − rj
1− pj

]
= 0,

rj
pj

T∑
t=1

ûj(t)=
T∑
t=1

nt − rj
1− pj

ûj(t).

Then

1− pj
pj

=
∑T

t=1 ûj(t)(nt − rj)

rj
∑T

t=1 ûj(t)
,

p̂j = rj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − rj)+ rj

∑T
t=1 ûj(t)

. (A.6)

Maximization of the state-dependent part of CDLL with respect to rj proceeds as follows:

d lnL
drj

=
T∑
t=1

ûj(t)
[
d
drj

log
(
nj − 1
rj − 1

)
+ log pj − log (1− pj)

]
= 0,

then replacing rj by r̂j, we get

d lnL
drj

=
T∑
t=1

ûj(t)

[
d
drj

log
(
nj − 1
rj − 1

)
+ log

rj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − rj)+ rj

∑T
t=1 ûj(t)

− log

(
1− rj

∑T
t=1 ûj(t)∑T

t=1 ûj(t)(nt − rj)+ rj
∑T

t=1 ûj(t)

)]
= 0, (A.7)

which requires numerical tools to maximize the expression:

d2 lnL

dp2j

∣∣∣∣∣
pj=p̂j

=
T∑
t=1

ûj(t)

[
− rj
p2j

− nt − rj
(1− pj)2

]
.

In order to maximize the state-dependent term with respect to pj , it is necessary to prove the
following inequality:

(1− pj)2

p2j
> −

∑T
t=1 ûj(t)(nt − rj)

rj
∑T

t=1 ûj(t)
.

According to Equation (A.5), we have

−
[∑T

t=1 ûj(t)(nt − rj)
]2

r2j
[∑T

t=1 ûj(t)
]2 <

∑T
t=1 ûj(t)(nt − rj)

rj
∑T

t=1 ûj(t)
.

Therefore, ∑T
t=1 ûj(t)∑T

t=1 ûj(t)(nt − rj)
+ 1> 0.
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According to estimated p̂j , it follows, that

p̂j
rj(1− p̂j)

+ 1> 0,

which is true, since rj > 0 and p̂j ∈ (0, 1).
In the following, we examine rj:

d lnL2

dr2j

∣∣∣∣∣
rj=r̂j

= −
T∑
t=1

ûj(t)
d2

dr2j
log

(
nt − 1
rj − 1

)
,

where

d2

dr2j
log

(
nt − 1
rj − 1

)
= · · · + rj

(nt − 3− rj)2
.

It is obvious that the expression above is positive. This completes the proof. �
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