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A B S T R A C T

Protection of body temperature is critically important for health. Diseases and infections cause local temperature
imbalances in the body. Infrared Thermography (IRT), which is a non-invasive and non-contact method, has
been used in medical applications for decades. Pre-diagnosis and follow-up treatment systems can be realized by
monitoring the temperature distribution in the body. In this study, IRT and deep Convolutional Neural Networks
(CNNs) models were used together for the first time to detect the health status of neonates. Neonatal thermal
images have been taken in the Neonatal Intensive Care Unit (NICU) of Selcuk University, Faculty of Medicine
(Konya, Turkey), over a one-year period. Neonatal thermal images were obtained from selected 19 healthy and
19 unhealthy neonates. Data augmentation methods, such as brightness enhancement, color transformation,
resolution and contrast changes, and the addition of different noises, were applied to the thermal images for the
training of a CNN model. A number of 3800 thermal images taken from neonates in NICU were augmented to
15,200 and 30,400 thermal images. Then, using CNNs, 380, 3800, 15,200, and 30,400 neonatal thermal images
were classified as healthy and unhealthy. The optimal result obtained was with 99.58% accuracy, 99.73%
specificity, 99.43% sensitivity, and 0.996 AUC for the 30,400 thermal images employed. Using the proposed
system, 15,159 of 15,200 thermograms belonging to healthy premature babies were classified as healthy,
whereas 15,114 of 15,200 thermograms of premature babies, diagnosed with at least one disease, were de-
termined as unhealthy.

1. Introduction

The temperature value of the body is vitally important for health
and has been used in medical applications since 400 BC [1]. Healthy
skin is characterized by thermal symmetry [2], whereas diseases and
infections cause local temperature changes resulting in consequently
occurring thermal asymmetry on the skin surface. Hence, temperature
measurement devices are used to identify any thermal changes and
provide information that facilitates the detection and diagnosis of dis-
eases. In conventional methods, the temperature value is obtained via
sensors and electrodes. In all aforementioned materials, the absolute
zero point (0 K) emits infrared radiation, and thermal cameras convert
the infrared radiation into electrical signals [3,4]. These electrical sig-
nals are then converted into thermograms, developed by a processing
unit, that include both temperature values and thermal representation.
Thermograms have been widely used in various environmental [5],
industrial [6], and medical [7] studies. Thermal imaging is called In-
frared Thermography (IRT) in medicine. IRT, which is a non-invasive

and non-contact method, has been used in medical studies in the fields
of thermoregulation [8], breast cancer detection [9,10], neonatal
monitoring [11], urology [12,13], and vascular diseases [14,15].

With the development of machine learning algorithms, the appli-
cation of automatic analyzes such as anomaly detection and lesion
segmentation instead of conventional template operations has con-
siderably increased. Therefore, feature engineering methods, including
feature extraction [16] and feature selection [17] are becoming in-
creasingly important. Object detection [18], pattern recognition
[19,20], medical image classification [21,22], and image segmentation
[23,24] have been effectively implemented.

The late diagnosis of diseases and anomalies increases mortality
rates. According to statistics of the World Bank [25], the mortality rate
in neonates was 18 in 2017. Pre-diagnosis and follow-up treatment
systems can be designed by observing the temperature distribution of
the skin, and the obtained information can be provided to medical
teams. Frequently, the temperature detection and analysis in neonates
is performed by electrodes and sensors attached to their sensitive skin
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[26]. In comparison to the use of sensors and electrodes, IRT provides
more capabilities, such as monitoring of the heart and respiratory rates,
as well as sleeplessness and restlessness.

The first study on neonatal IRT was conducted by Clark and Stothers
in 1980. They observed the skin temperature distribution of neonates
using thermography and a thermocouple thermometer [11]. A mean
square error of 0.107 was obtained in that investigation. In 2012, Abbas
et al. proposed compensation techniques for different clinical scenarios,
such as convective incubators, kangaroo care, and open radiant war-
mers [27]. Then, in 2013, Ruqia performed abdominal thermal sym-
metry analysis for early diagnosis of neonates with necrotizing en-
terocolitis (NEC) disease [28]. The results of this earlier study showed a
higher degree of thermal asymmetry in the group with NEC than in the
normal group.

Later, in 2014, Abbas and Leonhardt reported the preliminary re-
sults of their feature analysis and Newborn Infrared Thermography
(NIRT) imaging [29]. The authors performed decomposition of NIRT
images based on independent component analysis and computed the
first- and second-order statistical parameters. They also proposed in-
telligent neonatal monitoring [30]. Skin temperatures of neonates were
recorded using thermography, and a vector-based active follow-up
system was designed by identifying the region of interest. In 2017,
Knobel et al. measured the abdominal and foot temperature of neonates
using skin thermistors and thermography [31]. In 2018, Savasci and
Ceylan presented the first evaluation results of thermal image analysis
for NICU [32]. The obtained results showed differences between the
thermal symmetry degrees of healthy and unhealthy neonates. Ad-
ditionally, Ornek et al. conducted thermal approach analysis using
wavelet transform with a thermal map and RGB images [33]. They
demonstrated the importance of using a thermal map instead of RGB
images.

In recent decades deep learning models, such as multilayer per-
ceptron, CNNs, and recurrent neural networks have been rapidly de-
veloping. CNN models [34] were found to have high performance in
resolving visible [35–41] and thermal [42–48] image-based problems,
such as segmentation, classification, and detection.

Despite a large number of studies on deep learning and thermal
imaging, no report related to neonates is available in the literature.
Therefore, to the best of our knowledge, this is the first study on the
detection of the health status of neonates as healthy and unhealthy by
IRT and CNNs.

The rest of the paper is organized as follows. In Section 2, mea-
surement setup and data are presented. In Section 3, methods such as
networks architecture, data augmentation, evaluation metrics, and
cross-validation are described. Section 4present the detailed results and
the subsequent section describes the conclusion.

2. Measurement setup and data

Neonatal thermal images were taken in Selcuk University, Faculty of
medicine, NICU over a one-year period. The measurement setup im-
plemented is illustrated in Fig. 1.

Thermal images were obtained using IRBIS, designed by Infratec©
Vario- cam HD infrared camera, which is a product of Infratec, was used
for the recording of neonatal thermal images. The temperature resolu-
tion of the thermal camera is up to 0.02 K at 30 Celcius and the mea-
surement accuracy±1 Celcius or± 1%, the resolution 640× 480, and
hundreds of frames could be captured per second.

Since the temperature distribution of the body skin is so sensitive,
the conditions of the imaging room are very important. Therefore,
thermal imaging was implemented in thermally controlled NICU and
there was set about 25.5 Celcius. Before each measurement, a nurse
undressed the neonate, and images were taken from a distance of 60 cm
from the incubator. Maintaining the neonate’s comfort was critically
important, and thus all processes and manipulations were quickly
performed. If the image acquisition took more than a minute, the body

temperature of the neonate decreased, and hypothermia [49] could
occur. Five randomly selected neonatal thermal images are displayed in
Fig. 2.

The gestational age at the time of delivery of the healthy neonates
was from 24 to 34weeks; their birth weights were between 720 and
2800 g (Table 1).

Of the 19 unhealthy neonates, 10 had one disease, and the other 9
suffered from two diseases. As represented in Table 2, the gestational
age of the unhealthy neonates were between 28 and 39weeks, and their
birth weights ranged from 565 to 3300 g.

3. Methods

In the succeeding subsections, we describe the data augmentation
for the thermal images, the architecture of the proposed CNN model,
the evaluation metrics, and cross-validation. The block diagram of the
proposed system is illustrated in Fig. 3. Data augmentation methods
were implemented using MATLAB. The development of the CNNs
model and the classification were accomplished by PYTHON and Keras
library which uses TensorFlow backend. All the process was run on
Nvidia Quadro K2200 4 GB 128 Bit 640 Cuda GPU.

Image acquisition was performed, and 100 neonatal thermal images
were obtained from each neonate, which were augmented into 800
thermal images. In the first approach, 10 images were selected from
each group of 100 images taken from each neonate, or a total number of
380 images were used for the classification task. In the second ap-
proach, all of the 100 images of each neonate were employed, and a
total number of 3800 images were provided for the classification task.
In the third and fourth approaches, each group of 100 images was
augmented into 400 and then 800 images, respectively. The total
number of images used for the classification task was 15,200 and
30,400, respectively.

3.1. Data augmentation for thermal images

Obtaining neonatal thermal images was difficult due to the condi-
tions in the NICU and neonates. For example, since thermal cameras
detect the infrared radiation emitted from the surface, in our case, the
skin, neonate had to be undressed. However, some neonates had sur-
gical dressing and since it was not possible to remove these surgical

Fig. 1. Measurement Setup (a) infrared camera (b) baby (c) incubator (d)
portable computer.
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dressing, every neonate’s thermal image could be taken. On the other
hand, the used HD infrared thermal camera takes a hundred frames per
second. The body temperature of neonates must be protected.
Therefore, the image acquisition should not have taken more than a
minute, otherwise, hypothermia could have occurred.

A higher number of images are necessary for the effective training of
CNN models. Data augmentation is a method used to create new data
with states different from those of the original data. Brightness en-
hancement, resolution, and contrast changes, as well as the addition of
three different noises and color transformation, were utilized as data
augmentation methods according to [50]. Thus, the neonatal thermal
images were sevenfold augmented (Fig. 4).

The range of the pixel values of the original image in Fig. 4(a) is
between 0 and 1. To enhance the brightness of the image, 0.3 was
added to all pixels and values greater than 1 were equated to 1. Thus,
the range of pixel values was mapped between 0.3 and 1, the obtained
image is shown in Fig. 4(b). To change images contrast, all pixels were
multiplied by 0.5, in other words, the values of all pixels were reduced
to half, thus the darker images were obtained as shown in Fig. 4(c). To
reduce the resolution, the size of images has remained the same and the
resolution was reduced by a quarter, the obtained image is shown in
Fig. 4(d). The images were separated into red, green, and blue bands
and then reconstructed from red, green, and green bands for color

Fig. 2. Randomly selected neonatal thermal images.

Table 1
Physical characteristics of healthy neonates.

Subject Birth weight (g) Gestational age in weeks+ day

Healthy_1 720 24
Healthy_2 1825 34
Healthy_3 1300 28
Healthy_4 1100 28
Healthy_5 1375 28+2
Healthy_6 2200 32
Healthy_7 1580 29
Healthy_8 1690 30+5
Healthy_9 955 27
Healthy_10 1175 28+4
Healthy_11 1870 31+6
Healthy_12 1900 32+5
Healthy_13 2300 33+5
Healthy_14 1195 29+3
Healthy_15 950 28+5
Healthy_16 2800 35
Healthy_17 1605 33+6
Healthy_18 1885 32+1
Healthy_19 1660 32+1

Table 2
Physical characteristics of unhealthy neonates.

Subject Birth weight (g) Gestational age in weeks+day Disease 1 Disease 2

Unhealthy_1 2015 34 IKK Hypothermia
Unhealthy_2 1100 28 Respiratory distress –
Unhealthy_3 3300 33+1 RDS –
Unhealthy_4 3000 36 NEC PDA
Unhealthy_5 865 28 Respiratory distress Moaning
Unhealthy_6 1890 33+2 Respiratory distress DAB
Unhealthy_7 2055 34 PAB –
Unhealthy_8 1985 32 NEC –
Unhealthy_9 2305 34+1 Intestinal obstruction –
Unhealthy_10 2280 37 Hypoplastic left heart –
Unhealthy_11 2200 35 Ozofagus atrezi –
Unhealthy_12 1590 30 Respiratory distress Neonatal syphilis
Unhealthy_13 1790 31 NEC Sepsis
Unhealthy_14 2680 38 Diaphragm hernia Adeno
Unhealthy_15 2700 35 TTN –
Unhealthy_16 565 28 IUGR –
Unhealthy_17 3079 37 Ozofagus atrezi –
Unhealthy_18 3300 38 Hydrocephalus Myelomen- ingocele
Unhealthy_19 1100 33 AORT coarctation Down syndrome
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transformation. Thus, the blue band was removed from the images,
which transformed the color of the images, as depicted in Fig. 4(e).
Also, the obtained thermal image is similar to the images obtained by
visible imaging. During the process of obtaining the images, the systems
had to be resistant to drifting in the temperature distribution. To model
the drifting, salt and pepper noises with different densities (0.01, 0.02,
and 0.08) were added to the images Fig. 4(f–h).

3.2. The network architecture

CNN model is a deep learning model that provides high image
performance and is – based on applications, such as object detection,
pattern recognition, image segmentation, and classification [34].

CNN models consist of two main layers: convolutional and fully
connected. The convolutional layer includes convolution and pooling
operations. Convolution operation represents the extraction of the
features of the image depending on the selected kernel. The dimensions
of the kernel can be selected as 3×3, 5×5, or 7× 7. Pooling op-
eration refers to the reduction in the dimensions of the obtained feature

map according to pooling size and selected methods such as average
and maximum pooling. In this study, the convolution kernel size was
selected as 3× 3, and the maximum pooling kernel size as 2×2.

The fully connected layer consists of flattening operation and dense
layers. The flatten operation converts the obtained feature maps into a
feature vector. Subsequently, the dense layer creates weights to classify
the obtained vector. The architecture of our CNN model is illustrated in
Fig. 5.

Activation functions were used to set the output values. The recti-
fied linear unit (relu) activation function [51] converts the input values
(a) to f (a)=max (0, a). On the other hand, the sigmoid activation
function [52] converts the input value (a) to f (a)= 1/(1+ e-a), which
is a value between 0 and 1.

As can be seen in Fig. 5, our proposed CNN model included two
convolutional, two pooling, one flatten, and five dense layers. We re-
sized the dimensions of the input images from 512×512 to 64× 64.
The first convolutional layer consisted of 32 different 3×3 dimen-
sional layers (activation function= relu), whereas the second con-
volutional layer contained 16 different 3× 3 dimensional layers

Fig. 3. Block Diagram of the proposed system.

Fig. 4. Augmented thermal images (a) original (b) brightness enhancement (c) contrast changing (d) resolution changing (e) color transforming (f–h) salt and pepper
noise adding with 0.01, 0.02 and 0.08 densities, respectively.
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(activation function= relu). The dimensions of the two used pooling
layers were 2× 2 (pooling=max pooling). The first four dense layers
consisted of 512, 256, 64, and 16 neurons, respectively (activation
function= relu), and the fifth layer, called the output layer, included
one neuron (activation function= sigmoid). The output values varied
from 0 to 1. If the obtained value was bigger than 0.5, it was classified
as unhealthy and if the obtained value was lower than or equal to 0.5, it
was categorized as healthy.

The training parameters of the model were empirically defined. The
number of training epochs was selected as 3, and the samples number
per epoch was selected as 2000. The optimizer and loss function was
selected as Adam [53] and binary cross-entropy [54], respectively.

3.3. Evaluation metrics

To evaluate the performance of the classification, the confusion
matrix, sensitivity (1), specificity (2), and accuracy (3) values were
calculated [55]. The confusion matrix represents the number of true
positives (TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs) (Fig. 6). Where TP represents the number of unhealthy
neonates labeled as unhealthy while TN is the number of healthy
neonates labeled as healthy. In addition, FP represents the number of
healthy neonates labeled as unhealthy, and FN is the number of un-
healthy neonates labeled as healthy.

=

+

Sensitivity TP
TP FN (1)

=

+

Specificity TN
TN FP (2)

=
+

+ + +

Accuracy TP TN
TN TP FN FP

( )
( ) (3)

The operating characteristic (ROC) curve and area under the curve

(AUC) value have been calculated to compare the realized classifica-
tions [56]. ROC curve was constructed using the TP and FP rates. The
AUC value corresponds to the possibility of the obtained results. The
AUC value was between 0 and 1; AUC=1 indicated the optimal clas-
sification result.

3.4. Cross-validation

Data were frequently split into fixed testing and training parts to
evaluate the metrics obtained from the classification. Since a specific
part of the data was used in this method, it was inadequate for the
evaluation of the results. K-fold cross-validation [57] is a method that is
used for calculations of the reliability of the evaluation metrics of the
created model. According to the k-fold cross-validation, the data were
split into K parts, and each unit of datum was set as testing and training
data. In this study, K value was selected as 10 and the data are split into
10 parts. The number of testing and training data is shown in Table 3.

As can be seen from Table 3, four different approaches were rea-
lized. In the first approach, 10 images were taken from each one of the
38 neonates; this way, 380 images were used. According to the 10-fold
cross-validation performed, 380 thermal images were split into 10
parts. Hence, 38 images were defined as the testing set, and the re-
maining 342 images were classified as the training set. Furthermore,
another 38 images were reserved for the testing. This way, all images
were used for both testing and training. As a result, 10 different con-
fusion matrices were obtained. After the completion of 10–fold cross-
validation, 10 confusion matrices were summed, and the evaluation
metrics were calculated. In the second approach, 3800 neonatal
thermal images were selected, of which380 images were used for
testing and 3420 for training. After data augmentation was

Fig. 5. Proposed convolutional neural networks model.

Fig. 6. Confusion matrix representation.

Table 3
Number of training and testing data.

Approach Total Training Testing

I 380 342 38
II 3800 3420 380
III 15,200 13,680 1520
IV 30,400 27,360 3040
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implemented, 400 neonatal thermal images taken from every neonate
were used in the third approach, totaling a number of 15,200 images
obtained. Using 10-fold cross-validation, 1520 images were utilized for
testing and 13,680 images for training. In the fourth approach, 800
images of every neonate were obtained, that is 30,400 images, 3040 of
which were for testing and 27,360 for ten-fold training.

4. Results

In this study 380, 3800, 15,200, and 30,400 thermal images be-
longed to 38 neonates that were classified as healthy and unhealthy.
Confusion matrices were calculated using a 10 – fold cross-validation
method. Sensitivity, specificity and accuracy metrics were obtained
from confusion matrices and these metrics were used to evaluate the
performance of classification. The obtained ROC curve is depicted in
Fig. 7 and all results are presented in Table 4.

We used 380 thermal images by taking 10 different images from
every neonate in approach I. As can be seen from Table 4, of the 190
unhealthy thermal images, 156 were classified as unhealthy, and of the
190 healthy thermal images, 147 were categorized as healthy. The
evaluation metrics of approach I results were obtained as 82.10%
sensitivity, 77.36% specificity, 79.73% accuracy, and 0.797 AUC.

When the number of the thermal images was increased from 380 to
3800, all evaluation metrics values of approach II results were de-
creased. For example, the accuracy and AUC metrics diminished from
79.73% and 0.797 to 70.73 and 0.736, correspondingly. Augmentation
of the original thermal data was not implemented until the application
of approach III. All used data were selected from the original thermal
images.

Data augmentation methods, such as brightness enhancement,
contrast changing, and salt and pepper noise addition at a density of
0.02 were implemented in approach III. That is the original thermal
images were threefold augmented. Thus, the CNN model was trained
with 15,200 thermal images (11,400 augmented, 3800 original). As can
be seen from Table 4, the sensitivity, specificity, and accuracy metrics

of approach III are above 99%, and AUC is 0.991.
In approach IV, new data augmentation methods, such as resolution

changes, color transformation, and two different salt and pepper noise
additions at densities of 0.01 and 0.08 were added. Thus, new 15,200
augmented thermal images were obtained, and totally 30,400 thermal
images were used in the training of the CNN model.

The optimal results were obtained in this approach. Of the 15,200
unhealthy thermal images, 15,159 were classified as unhealthy and of
the 15,200 healthy thermal images, 15,114 as healthy. The best sensi-
tivity obtained was 99.73%, specificity was obtained as 99.43%, ac-
curacy was obtained as 99.58% and AUC was obtained as 0.996.

5. Discussion and conclusions

Thermal imaging which is a non-contact and non-invasive method
provides more capabilities than visible imaging. For example, tem-
perature values of the body can be obtained with thermal imaging even
in darkness. Thermal imaging applications are called Infrared
Thermography (IRT) in medicine. Body temperature is considerably
important for health status evaluations, and since diseases, disorders
and infections cause thermal anomalies over the body, IRT can be used
to detect breast cancer and vascular diseases and realize neonatal
monitoring systems.

For the last four decades, studies on neonatal IRT have been con-
sistently pursued. Frequently, methods such as region of interest se-
lection, specific template creating and matching over the body and
comparison of reference have been used. But, these methods contain a
lot of specific operations and they are not always valid. Since neonates
move right to left in an incubator, created specific templates do not
match for every movement.

Problems that cannot be solved using the classic methods have been
rapidly solved with the developing of deep learning methods in recent
decades. Especially deep Convolutional Neural Networks (CNNs)
models demonstrate high performance at solving both visible and
thermal images-based problems such as classification, detection and
segmentation. In CNNs models, feature extraction and reduction, region
of interest selection and specific code creation are not realized. The user
creates a CNNs model architecture with convolutional and fully –
connected layers and this model creates codes and solves problems it-
self.

Until this study, CNNs models were not used for neonatal IRT. We
collected thermal images of neonates in Selcuk University, Faculty of
Medicine, Neonatal Intensive Care Unit for a year. Here, we used
neonatal images taken of 38 different neonates (19 healthy and 19
unhealthy).

The neonates tended to move while thermal images were being
taken, which reduced the performance of the conventional neonatal
monitoring methods. Since our created CNN model is trained with
images taken in different positions during the movements of the neo-
nates, it does not affect the model’s performance.

The only problem that the CNN model may face is the lack of data.
We used data augmentation methods to overcome this issue. Brightness
enhancement, contrast, and resolution changes, color transformation,
and noises additions were implemented to the acquired thermal images.
Thus, we trained our CNNs model with 380, 3800, 15,200, and 30,400
thermal images. The best results obtained were: 99.73% sensitivity,
99.43% specificity, 99.58% accuracy, and 0.996 AUC for the healthy
and unhealthy classification of neonates by using 30,400 images.

In future studies, we aim to create a pre-diagnosis system to detect
diseases, such as respiratory distress syndrome, patent ductus arter-
iosus, necrotizing enterocolitis, and congenital diaphragmatic hernia.
Further improvement of the findings and approaches employed in this
study will facilitate the development of a system with the potential to
follow up and monitor the daily status and treatment process of neo-
nates. Therefore, these advancements can decrease the mortality rates
of neonates in cases when the problems that occur have been earlier

Fig. 7. Confusion matrix representation.

Table 4
Results table.

Approach Confusion Matrix Sensitivity Specificity Accuracy AUC

I 156 34 82.10% 77.36% 79.73% 0.797
43 147

II 1451 449 76.36% 70.73% 73.55% 0.736
556 1344

III 7529 71 99.06% 99.07% 99.07% 0.991
70 7530

IV 15,159 41 99.73% 99.43% 99.58% 0.996
86 15,114
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