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Abstract Soft computingmodels are known as an efficient tool for modelling temporal and spatial
variation of surface water quality variables and particularly in rivers. These model’s performance
relies on how effective their simulation processes are accomplished. Fuzzy logic approach is one of
the authoritative intelligent model in solving complex problems that deal with uncertainty and
vagueness data. Riverwater quality nature is involvedwith high stochasticity and redundancy due to
the its correlation with several hydrological and environmental aspects. Yet, the fuzzy logic theory
can give robust solution for modelling river water quality problem. In addition, this approach
likewise can be coordinated with an expert system framework for giving reliable and trustful
information for decision makers in enhancing river system sustainability and factual strategies. In
this research, different hybrid intelligence models based on adaptive neuro-fuzzy inference system
(ANFIS) integrated with fuzzy c-means data clustering (FCM), grid partition (GP) and subtractive
clustering (SC) models are used in modelling river water quality index (WQI). Monthly measure-
ment records belong to Selangor River located in Malaysia were selected to build the predictive
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models. The modelling process was included several water quality terms counting physical,
chemical and biological variables whereas WQI was the target variable. At the first stage of the
research, statistical analysis for each water quality parameter was analyzed toward the WQI.
Whereas in the second stage, the predictive models were established. The finding of the current
research provides an authorized soft computingmodel to determineWQI that can be used instead of
the conventional procedure that consumes time, cost, efforts and sometimes computation errors.

Keywords Hybrid ANFISmodels .Water quality index . Tropical environment . River
sustainability

1 Introductory

Based on a steady stream of hydrological studies, a river is a stream that flows into channels in
a natural way, where the quality can be affected by diverse endeavors, committed by nature
and human (Das Gupta 2008; Grabowski and Gurnell 2016). Activities that concern with the
geological, hydrological and climatic aspects can all determine river water quality. Having
added uninvited materials into the water can lead to water pollution, as it can adversely affect
the water quality. These water contaminants are classified into the point-source pollutants and
the non-point pollutants; the latter of which serve as the major percentage of water pollutants
(Lai et al. 2011). The impact of pollution is usually far from the contamination source, and yet
it is proven to still be detrimental to human but also to other creatures and the water itself. The
life and reproductive activities of human and aquatic entities can be harmed, as the pollution is
naturally health-threatening, and it does not sit well with the water supply system. Surface
water quality has become very essential and critical matter all around the nations, owing to the
fact of fresh water trends to be scarce in the near future (Bharti and Katyal 2011). Hence
monitoring and quantifying water quality is extremely momentous for fresh water protection.

Malaysia water demands was quantified 15,285 m3/day in 2010 and the predicted incre-
ment exceed the 60% (20,338 in 2020). Due to this, fresh water control, monitoring and
maintenance are vastly required to ensure the safety of water availability (Fulazzaky et al.
2010). All over the world, various developmental projects have left a negative mark on the
water quality and indirectly affected human life and the environment as well (Ouyang 2005). It
is a fact that there are various sources of pollution in Malaysia (Shuhaimi-Othman et al. 2007;
Azamuddin Arsad et al. 2012; Dada et al. 2012; Othman et al. 2012). It is also added by the
fact that Malaysia is located in the tropical zone and due to this, the pollution sources are
determined by the heavy rainfall, where the sources affect the catchment areas when various
pollutants are carried away by the flood water. The proliferation of contaminants worsens the
water quality, reducing the amount of the oxygen content as well as increasing harmful algae.
To add, there are also other serious issues namely conditions that negatively impact the flow
depth and river bed conditions. The WQI is created to evaluate the extent to which the water
body is suitable for various water activities or uses (Tyagi et al. 2013). WQI is determined
through highly complicated procedure of calculation that involve several individual water
quality variables magnitude including dissolved oxygen (DO), total suspended solid (TSS),
turbidity (TU), calcium (CA), biochemical oxygen demand (BOD), chemical oxygen demand
(COD), temperature (TEMP), and pH. The procedure of the computation for WQI is tradi-
tionally world-wide known as very complex and might presents inaccurate determination.
There are several countries use the same manual of calculation such as Korea, India, Portugal,

2228 Yaseen Z.M. et al.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Brazil, USA (Cude 2001; Sargaonkar and Deshpande 2003; Bordalo et al. 2006; Abrahão et al.
2007; Song and Kim 2009). It is imperative to identify and recognize the quality of the water to
enable effective supervision of water pollutants, and the sooner this is identified and addressed,
the sooner for the WQI to be able to monitor and execute any vital improvement to restore the
water quality (Avvannavar and Shrihari 2008).

The assessment of the water quality in developing countries such asMalaysia is important to
enable us to comprehend the issue about river pollutants. It is also important to enable effective
measures to be taken to treat the water, and further helps to improve the state of health of living
beings. Several variables that can ascertain water quality are normally measured in the
laboratory as the water quality is assessed (Barzegar et al. 2017). Because of the uneconomical
and time-consuming process to analyses these parameters separately, this has led to the
concerted effort to develop and explore soft computing models to accurately compute these
parameters with less efforts (Maier et al. 2004). It is essential to devise a fast and reliable WQI
computational approach, as it will help launch a more advanced monitoring of the contaminant
levels and further raise the awareness of the surface water quality (Hameed et al. 2016). Thus,
studying new methods to successfully predict the river water quality indexing is the mainstay
of this study.

Artificial intelligence (AI) models including artificial neural network, adaptive neuro-fuzzy
system (ANFIS), support vector machine, hybrid computing models are developed to address
the non-linearity and non-stationarity of the water quality variables by several researchers
(Palani et al. 2008; Khalil et al. 2011; Gazzaz et al. 2012; Niroobakhsh 2012; Wang et al. 2012;
Nourani et al. 2013; Liu and Lu 2014). Between all these models, ANFIS model was exhibited
an efficient and essential method in modelling water quality over the other models (Yan et al.
2010; Sahu et al. 2011; Orouji and Haddad 2013; Emamgholizadeh et al. 2014; Ahmed and
Shah 2015; Wei-Bo and Wen-Cheng 2015). Fuzzy system is featured to be capable in
formulating rules that are based on linguistic terms for learning processes purposes. As a fact,
fuzzy system internal parameters are not simply can be tuned or optimized and particularly for
prediction problem. The determination of the internal parameters of fuzzy system is still
ongoing mission for the expertise researchers to be solved optimally. The integration of the
fuzzy system model with different learning optimization algorithms can produce a robust
hybrid intelligent model to solve this problem and improve the prediction performance. Fuzzy
c-Means Clustering (FCM), Grid Partition (GP) and subtractive clustering (SC) algorithms
have shown an effective optimization procedure for ANFIS model, several scholar in the last
five years investigated the feasibility of the ANFIS-FCM, ANFIS-GP and ANFIS-SC models
on numerous aspects in water resources engineering such as hydrology, environment, climate
and agriculture problems including pan evaporation (Sanikhani et al. 2012), river flow
estimation and forecasting (Sanikhani and Kisi 2012), suspended sediment modelling (Kisi
and Zounemat-Kermani 2016), soil temperature modelling (Kisi et al. 2016), total dissolve
oxygen prediction (Zaman Zad Ghavidel and Montaseri 2014), evapotranspiration simulation
(Kisi et al. 2015). Up to date and for the best knowledge of the authors, there is no research has
been conducted previously on the utilization of the hybrid ANFIS-FCM, ANFIS-GP and
ANFIS-SC models for water quality index prediction.

In this paper, three different learning algorithms namely FCM, GP and SC were integrated
with ANFIS model for water quality index prediction. To achieve this, a highly stochastic river
flow water quality case study located in Selangor state, Malaysia was selected as a case study.
The modelling was carried out to predict the water quality index based on several water quality
parameters including biological, physical and chemical. The attained modeling results are
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compared with each other. The motivation of implementing these hybrid models to provide an
authoritative predictive that can be applied for the tropical environment of Malaysian region.

2 Methods and Materials

In this research, three hybrid models namely ANFIS-FCM, ANFIS-GA and ANFIS-SC were
developed and compared with each other for the ability to predict the WQI in tropical
environment located in peninsular Malaysia for Selangor River. The MATLAB software
environment was used for the application of each predictive model.

2.1 Adaptive Neuro Fuzzy Inference System (ANFIS)

ANFIS is a combination of fuzzy system and the learning capacity of neural networks (Tabari
et al. 2012). There are three principal types of ANFIS, Mamdani, Sugeno, and Tsumoto;
However, the Sugeon’s system is the most used (Sanikhani et al. 2012). In Fuzzy logic, inputs
data is converted into fuzzy values by employing membership functions. Fuzzy values are
comprised between 0 and 1. Nodes which working as membership functions (MFs) and rules
permitting to model the relationship between input and output, form the structure of the ANFIS
model. Several types of Membership Function exist including triangular, trapezoidal, Gaussian
and sigmoid. The Gaussian function (Eq. 1) is the most commonly usedMF (Karimi et al. 2013).

VNi ¼ 1

1þ x−αið Þ=βi

h i2μi ð1Þ

where x represents the input at i node, VNi the membership function, and , βi, and μi are the
conditional parameters of the function.

In ANFIS, rules are defined based on their antecedents (If part) and consequents (Then part)
and these rules are stocked in a fuzzy based rule system (‘the IF-THEN’ rules).

The two Eqs. (2 and 3) display the rules for a Sugeno ANFIS model with two inputs (x and y)
and one output f (Jang 1993).

Rule 1 : IF x is P1 and y is Q1; then f 1 ¼ p1xþ q1yþ r1 ð2Þ

Rule 2 : IF x is P2 and y is Q2; then f 2 ¼ p2xþ q2yþ r2 ð3Þ
Pi and Qi are fuzzy sets, fi represents output within the fuzzy region, and pi, qi, and ri are the

design parameters determined during the training process. The Fig. 1a showed the architecture
of an ANFIS with two inputs (x and y) and one output (f). More comprehensive details about
the ANFIS approach can be found in (Jang 1993).

2.2 Fuzzy c-Means Clustering (FCM)

In data clustering, the data set is classified into groups and data sets with the same character-
istics belong to the same clusters and non-similar data sets to different clusters. The FCM
(Bezdek 1973), an improvement and modification of K-means clustering, uses a dataset of xi
data points to define C clusters by minimizing the objective function U defined in Fig. 1b. The
algorithm of the FCM is presented in Fig. 1b.
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FCM is an unsupervised algorithm and the objective function (U in Fig. 1b) is minimized
before computing new fuzzy clusters. p (comprise entre 0 and 1) is the fuzzifier exponent, C is
the number of clusters; N is the number of data points; ci is the cluster’s centers.

2.3 Grid Partitioning (GP)

ANFIS-GP is a combination of ANFIS and grid partition. In Grid partition method, data is
divided into grid data, based on the type and number of member function (MFs) in each
dimension. The Fig. 1c presents a chart description of the ANFIS-GP with 3 partitions (k = 3).

(a)

(b)

Fig. 1 a ANFIS model architecture with 2 inputs and 5 layers, b FCM algorithm procedure, c Grid partitioning
with 2 inputs with K = 3

Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation 2231

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



ANFIS-GP follows a process and begins with zero output and progressively learns the
different fuzzy set rules and functions through the training procedure, (Cobaner 2011; Kisi and
Zounemat-Kermani 2014). The least square estimate method is used for determining initial
fuzzy sets and parameters depending on the partition and MF types (Kisi and Zounemat-
Kermani 2014).

2.4 Subtractive Clustering (SC)

ANFIS subtractive clustering (ANFIS-SC) model is a combination of combining ANFIS and
subtractive clustering (SC) method. In SC every single data point set is considered as a
potential cluster center. Therefore, a point with several neighboring points presents a high
potential value. Thus, in order to determine the first cluster center, a measure of density (di) is
defined (Eq. 4) and the data set point with the highest density or potential value is elected as
the first cluster center (Kisi et al. 2015).

di ¼ ∑ N
k¼1exp −

2

r0

� �2

: xi−xkk k2
 !

ð4Þ

The di represents the density measurement, xi: the considered cluster center, xk is the
remaining data points and ro the influence radius. After selection of the first cluster
center x'1 with a density d'1, a new density (dinew) is determined by excluding the impact
of the first cluster center. The Eq. 5 presents the calculation of the new density measure-
ment (Kisi et al. 2015).

dinew ¼ di−d01:exp −
xi−x01k k2

rb
2

� �2
 !

ð5Þ

Fig. 1 (continued)
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rb is constant describing the neighborhood which will have measurable decreasing in
potential. The closest points to the first cluster center will have significantly reduced
potential and have less chance to be selected as next cluster center. The choice of the
influential radius is very important for defining the number of clusters. Optimal ra has to be
between 0.1 and 2 (Kisi and Zounemat-Kermani 2014) and rb equals to 1.25ra (Sanikhani
and Kisi 2012). Many clusters lead to more rules, therefore, it is primordial to avoid very
small radius.

2.5 Description of Selangor River

For this particular research, the choice was done based on the importance of the
river basin (Selangor river basin). It covers approximately 25% of the whole
Malaysia (see Fig. 2). Therefore, particular attention needs to be under taken for
this catchment, principally in this context of water scarcity. As background knowl-
edge of the case study, Selangor river basin is located in the state of Selangor,
with the catchment area of about 2200 km2- covering approximately 25% of the
whole state. At an elevation of 1700 m, the river begins at the border between
Selangor and Pahang. The river flows southwesterly, covering a total distance of
110 km before discharging into the Straits of Malacca in Kuala Selangor and
several other rivers serve as its main tributaries. The basin area is half-covered
by natural forest and a small percentage is dominated by various agricultural
activities. Both the point sources and the non-point sources constitute the river
pollutants, and yet, the readily-available data would not be enough to estimate
quantitatively the pollutant loads accurately. Due to the fact that the data of the
water quality may have to be studied separately through the experiences and
knowledge of experts, to know the impact of the element content in the water
on both the environment and human, the results of the water quality analysis have
become ambiguous. The assessment of the river water quality can be done in three
ways- firstly the water quality evaluation, which looks into the physicochemical
and biological qualities of the water, secondly the physical quality evaluation
system that delves into the level of man-made change on the main channel,

Malaysia

Fig. 2 Selangor river basin located in western part of peninsular Malaysia
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channel margins and river banks and thirdly, the biological quality evaluation
system which gauges the state of the biosciences of the aquatic environment.

3 Results and Discussion

As a preceding analysis for the actual data set, Table 1 gives the monthly statistical parameters
of the Water Quality Index at the Selangor station for the time-period 2000 to 2011 including
the monthly mean value (Xmean), standard deviation (Sx), coefficient of skewness (Csx),
minimum (Xmin), and maximum value (Xmax) of the WQI, respectively. The recent data are
not taken into account because those data are not available or not accessible. However, we
used twelve years of monthly data that concern both dry and wet seasons. In water quality
studies, having twelve years of data is very remarkable and it is very rare to continually
monitor quality data in the context of the study area. This fact corroborates the importance of
using data driven model to estimate the water quality index. Based on Table 1, results exhibit
high variation of WQI with a standard deviation varying from 83.2 to 86.1 and a coefficient of
skewness greater than 6.90. The period 2009–2011 shows the smallest amplitude compared to
the other three periodicity scales. There is not an obvious temporal pattern of the WQI which
confirm the complexity and non-linearity pattern of WQI.

The correlation matrix between WQI and each of the input variables used in the modelling
displayed in Table 2. In this study the main variables that can affect the water quality index had
been used and the stepwise approach was used to determine the main variables participating to
the determination of water quality index. Indeed, this table permits to clearly identify two
groups of inputs accordantly to the direction of the relationship between inputs and WQI: (i)
inputs with a positive correlation and (ii) inputs with negative correlation. Here, the value of
the correlation is very essential for the developed machine learning predictive models. The
sign (or direction) of the correlation only shows the proportionality of independent and
dependent variables. Only two water quality variables (DO and pH) out of the 8 inputs are
positively correlated to the WQI with a value of 0.83 and 0.467 for DO and pH, respectively.
Among the inputs with a negative correlation coefficient with WQI, total solids and turbidity
give the highest correlation with a value of −0.769 and −0.651, respectively. The temperature
of water is lesser correlated to the WQI. This phenomenon best can be elucidated owing to the
river environment which is tropical environment with heavy monsoon rainfall events. The
percentages of DO and pH can be highly affected by the total surface water runoff in addition
to its total suspended solid.

Based on the different inputs presented in Table 2, eight input combinations were defined: i
to viii (Table 3). The stepwise approach was applied to determine each of the combination. For
the first combination only the DO, presenting the highest positive correlation with the WQI
was considered and for each of the remaining combination (from ii to viii combination), a

Table 1 The monthly statistical parameters of WQI data set of Selangor station

Periods Sx Csx xmin xmax xmean

2000–2002 84.262 8.353 −0.897 60.796 0.048
2003–2005 86.067 7.416 −0.735 69.541 −0.169
2006–2008 84.419 6.924 −0.703 66.451 −0.138
2009–2011 83.286 8.811 −0.174 64.766 −0.061
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different water quality parameter considered as another input’s. The water quality index may
be affected also by the management practices and other river basin characteristics; therefore a
model may integrate this information in their processes and we expect that with this approach
we may get very good results. However, in the context of data scarcity and the complexity of
developing these kind of models. It will be more practical and optimal to develop model that
use less data and produce accurate results like Artificial Intelligence models.

For each input combination, the four sub time periods (M1, M2, M3, and M4) and their
optimal models were tabulated in Table 4. The choice of these optimal models was based on
the number of cluster and number of iteration for ANFIS-FCM, on the membership function
type, number of membership functions, and number of iterations for the ANFIS-GP; on the
radii value and number of iterations for the ANFIS-SC.

The hybrid integrative ANFIS predictive models were evaluated and assessed using various
statistical indicators to outline the prediction accuracy. In fact, soft computing methodologies
usually react and behave differently from one case to another, this is owing the degree of the
complexity of the problem. Hence, different evaluation metrics including root mean square
error (RMSE), mean absolute error (MAE), and coefficient of determination R2 were
inspected.

RMSE satisfies the triangle inequality that is required for a distance function metric for
model evaluation and it is preferred in data assimilation field where the sum of squared errors
is often defined as the cost function to be minimized by adjusting model parameters. MAE
indicates the average magnitude of the model error and the fact of taking the absolute value
avoids error compensation. R2 describes the degree of linear association between observed and
predicted values directly such that it lies between 0 and 1 (with 1being a perfect model).

Table 2 Correlation matrix between WQI and each input attribute of water quality variables

DO mg/l TS mg/l TUR
Neph.U

CA mg/l BOD mg/l COD mg/l TEMP oC pH Unit WQI

DO mg/l 1.000
TS mg/l −0.549 1.000
TUR N.U −0.456 0.856 1.000
CA mg/l −0.503 0.405 0.210 1.000
BOD mg/l −0.341 0.250 0.225 0.321 1.000
COD mg/l −0.228 0.432 0.401 0.154 0.329 1.000
TEMP oC −0.508 0.318 0.203 0.321 0.261 0.151 1.000
pH 0.375 −0.414 −0.236 −0.484 −0.106 −0.098 −0.256 1.000
WQI 0.830 −0.769 −0.651 −0.542 −0.537 −0.511 −0.471 0.464 1.000

Table 3 The input combinations investigated in the current research to predict the WQI

Input combination DO mg/l TS mg/l TUR Neph.U CA mg/l BOD mg/l COD mg/l TEMP oC pH

(i) √
(ii) √ √
(iii) √ √ √
(iv) √ √ √ √
(v) √ √ √ √ √
(vi) √ √ √ √ √ √
(vii) √ √ √ √ √ √ √
(viii) √ √ √ √ √ √ √ √
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However, this is a linear metric and is based on the covariance in the observed and predicted
data, so only the dispersion of the predicted and observed data is quantified (one of the main
disadvantage).

The combination of these three metrics leads to a valuable conclusion of the accuracy of a
model. The prediction performance of the ANFIS-FCM, ANFIS-GP, and ANFIS-SC models
were tabulated in Tables 5, 6, and 7, respectively. It is shown that in general that ANFIS-SC
gave the best performance compared to the other models. For all three models, the combination
with the full inputs give the best results for M2, M3, and M4 while for M1 there is not a
consistency of the results. The RMSE varied from 1.04 to 3.68, between 1.82 and 4.26, and
from 0.56 to 0.95 for the ANFIS-FCM, ANFIS-GP, and ANFIS- SC, respectively; the MAE
ranged from 0.70 to 2.86, from 1.22 to 2.92, and between 0.40 and 2.86 for the ANFIS-FCM,
ANFIS-GP, and ANFIS- SC, respectively. The coefficient of determination is varying between
0.77 and 0.97 for the ANFIS-FCM, 0.77 to 0.88 for ANFIS-GP, and 0.78 and 0.98 for the
ANFIS-SC. When considering the different input combinations and the optimal models
together, the mean RMSE (MAE) is 1.86 (1.39), 2.84 (1.91), and 1.18 (1.19) for the
ANFIS-FCM, ANFIS-GP, and ANFIS-SC, respectively; the coefficient of determination is
0.93, 0.87, and 0.93, respectively. This confirms again the superiority of the ANFIS-SC
compared to the other two models. The ANFIS-FCM which is also cluster based model has
also better accuracy than the ANFIS-GP.

For further analysis, each of the best combination of optimal models and input variable
combinations are considered for each of the ANFIS-FCM, ANFIS-GP, and ANFIS-SC model.
Figure 3a–d give the graphical comparison of optimal models in prediction of WQI. For
optimal model M1, the input combination vi, iv, and v gave the best results for ANFIS-FCM,
ANFIS-GP, and ANFIS-SC models, respectively; while for M2 model, the full input variables
(combination viii) exhibit the best performance for all models. For M3 and M4, the full
variable combination displays the best results for ANFIS-FCM and ANFIS-GP whereas, for
M3 and M4, the vi and v combination demonstrate the accurate results for ANFIS-SC. Across
all input combinations, the model M1 presents the poorest results for all the three ANFIS. The
scatterplot and the hydrographs of calculated versus predicted WQI presented in Figs. 2 and 3

Table 5 Test statistics of ANFIS-FCM models in prediction of WQI

Statistics Cross
validation

Input combinations

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Mean

RMSE M1 4.7047 2.8679 3.1531 2.6476 2.3275 2.2828 2.4801 2.8689 2.9166
M2 3.0508 2.0065 1.8296 1.8063 1.6683 0.8970 0.5710 0.4329 1.5328
M3 3.7212 2.1794 1.4965 1.4965 1.3145 0.7875 0.6236 0.4345 1.5067
M4 3.2347 2.1246 1.7289 1.7862 1.1551 0.8238 0.5155 0.4309 1.4750
Mean 3.6778 2.2946 2.0520 1.9341 1.6163 1.1978 1.0476 1.0418 1.8578

MAE M1 3.3821 2.1447 2.2865 2.0368 1.6894 1.7537 1.7747 1.9775 2.1307
M2 2.5269 1.6214 1.5134 1.2610 1.2284 0.6809 0.3959 0.2696 1.1872
M3 3.0816 1.6289 1.0715 1.0715 0.8896 0.5768 0.4160 0.2645 1.1250
M4 2.4689 1.6550 1.3112 1.4714 0.8438 0.5787 0.3563 0.2932 1.1223
Mean 2.8648 1.7625 1.5456 1.4602 1.1628 0.8975 0.7357 0.7012 1.3913

R2 M1 0.6801 0.8955 0.8691 0.9131 0.9206 0.9271 0.9187 0.8864 0.8763
M2 0.8347 0.9312 0.9383 0.9396 0.9490 0.9861 0.9941 0.9967 0.9462
M3 0.7083 0.9046 0.9529 0.9529 0.9632 0.9870 0.9922 0.9960 0.9321
M4 0.8684 0.9409 0.9609 0.9586 0.9838 0.9910 0.9966 0.9977 0.9623
Mean 0.7729 0.9181 0.9303 0.9411 0.9542 0.9728 0.9754 0.9692 0.9292
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showed that the best model to predict the WQI is ANFIS-SC (M4-vii) with a slope of 1, an
intercept of - 0.043, and a perfect coefficient determination of 1.

Results from this study indicate generally that the performance of ANFIS-SC in modelling
the water quality index is better than the ANFIS-FCM and ANFIS-GP. These results are in
accord with other studies like Sanikhani and Kisi 2012 that proved the ANFIS-SC feasibility
performed better than ANFIS-GP in streamflow forecasting at the Firat-Dicle Basin of Turkey
in the Besiri Station and the Baykan Stations. Also, (Kisi and Zounemat-Kermani 2016)
demonstrated the superiority of ANFIS-FCM over the ANFIS-GP to simulate the daily
suspended sediment at Muddy Creek in the USA; however, these findings contrast with the
output from the research of Kisi and Zounemat-Kermani 2014 whom concluded that ANFIS-
GP gave better performance than ANFIS-SC in modelling daily reference evapotranspiration.

Table 6 Test statistics of ANFIS-GP models in prediction of WQI

Statistics Cross
validation

Input combinations

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Mean

RMSE M1 4.6134 2.9632 3.8633 3.5672 3.8372 4.3739 15.3906 11.3374 6.2433
M2 3.1402 2.5283 2.3366 1.8344 1.6536 1.2603 0.7672 0.4125 1.7416
M3 3.5711 2.4614 1.7629 1.4397 1.5652 1.0766 0.6033 0.1792 1.5824
M4 3.5163 2.7618 1.8987 3.5672 1.4098 0.5613 0.2859 0.2089 1.7762
Mean 3.7103 2.6787 2.4654 2.6021 2.1165 1.8180 4.2618 3.0345 2.8359

MAE M1 3.4668 2.1301 2.9882 2.7394 2.7746 2.6786 6.9130 6.4745 3.7706
M2 2.5737 2.0102 1.9396 1.4108 1.2014 0.9833 0.5292 0.2804 1.3661
M3 2.9544 1.8642 1.2200 0.9933 1.1776 0.7927 0.3465 0.0980 1.1808
M4 2.7011 2.1168 1.4221 2.7394 1.0606 0.4154 0.1932 0.1067 1.3444
Mean 2.9240 2.0303 1.8925 1.9707 1.5535 1.2175 1.9955 1.7399 1.9155

R2 M1 0.6975 0.8836 0.7812 0.8368 0.7839 0.7279 0.1375 0.5603 0.6761
M2 0.8252 0.8899 0.8995 0.9390 0.9532 0.9714 0.9904 0.9970 0.9332
M3 0.7297 0.8815 0.9365 0.9573 0.9488 0.9765 0.9928 0.9993 0.9278
M4 0.8456 0.8995 0.9533 0.8368 0.9759 0.9960 0.9989 0.9994 0.9382
Mean 0.7745 0.8886 0.8926 0.8925 0.9155 0.9179 0.7799 0.8890 0.8688

Table 7 Test statistics of ANFIS-SC models in prediction of WQI

Statistics Cross
validation

Input combinations

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Mean

RMSE M1 4.5034 3.1739 3.3453 3.3358 2.2995 2.3880 2.3858 2.2449 2.9596
M2 3.0643 2.3025 2.2231 1.1125 0.0006 0.0005 0.0008 0.0004 1.0881
M3 3.6298 2.2736 2.0636 1.3058 0.0005 0.0012 0.0008 0.0010 1.1595
M4 3.2623 2.2671 2.2551 1.1483 0.0008 0.0007 0.0004 0.0006 1.1169
Mean 3.6149 2.5043 2.4718 1.7256 0.5754 0.5976 0.5969 0.5617 1.5810

MAE M1 3.3980 2.3177 2.3963 2.5580 1.6030 1.7830 1.7295 1.7022 2.1859
M2 2.5278 1.7494 1.8283 0.7248 0.0003 0.0002 0.0005 0.0002 0.8539
M3 2.9473 1.7824 1.5461 0.9535 0.0003 0.0005 0.0005 0.0005 0.9039
M4 2.5636 1.6543 1.6460 0.8399 0.0004 0.0003 0.0003 0.0004 0.8381
Mean 2.8592 1.8759 1.8542 1.2691 0.4010 0.4460 0.4327 0.4258 1.1955

R2 M1 0.7088 0.8982 0.8887 0.8708 0.9241 0.9280 0.9270 0.9434 0.8861
M2 0.8332 0.9018 0.9191 0.9779 1.0000 1.0000 1.0000 1.0000 0.9540
M3 0.7213 0.8952 0.9140 0.9672 1.0000 1.0000 1.0000 1.0000 0.9372
M4 0.8645 0.9345 0.9332 0.9832 1.0000 1.0000 1.0000 1.0000 0.9644
Mean 0.7819 0.9074 0.9138 0.9498 0.9810 0.9820 0.9817 0.9859 0.9354
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From these, it is clearly shown that the modelling is site specific and different models may
yield different performance depending on the domain of research as well as the geographical
area. It is clear that the results of modelling depend on several factors (data, geographical area,
quality of data, type of model, etc.); therefore, one model can perform better in one context and
give poor results in another situation. For this reason, models have to be test in the given
situation before its use. Other studies like Kisi and Ay 2013, they pointed out the accuracy
similarities of the ANFIS-SC, ANFIS-GP, and ANFIS-FCM to simulate chemical oxygen
demand. In other cases, depending on the time scale, models perform differently. For example,
Sanikhani et al. 2015 found that the optimal ANFIS-GP models performed better than the
optimal ANFIS-SC in forecasting 1 and 3-month ahead of the Manyas and Tuz lake levels
whereas the ANFIS-SC model showed better accuracy in 2-month ahead forecasting. Patki
et al. (2013) applied fuzzy logic based models for modelling water quality index using
physico-chemical properties of the water, such as pH, dissolved oxygen, total alkalinity, total
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Fig. 3 The graphical comparison of optimal model in prediction the WQI, a M1, b M2, c M3, and d M4
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hardness, total solids and most probable number as inputs to the models. The best fuzzy model
provided RMSE = 4.49, MAE = 3.53 and R2 = 0.98 in modelling WQI in the test period. They
used ANFIS-GP model in their study and reported that the applied models captured the trend
fully and there is no scatter in training period. During testing, however, the ANFIS-GP
performed very poorly. According to the authors, the poor performance of ANFIS might be
due to creating more rules, classifying limits for subsets and fixing overlapping pattern on its
own by the ANFIS editor. Based on the current performance metrics (Tables 5, 6, and 7), it is
clear that the applied ANFIS models provided accurate results in modelling WQI.

The results inform also that inputs variable play a key role in the accuracy of the modelling.
The model with more input variables give the best results in general; however, in one hand,
outputs from this research point out that the pH variable does not ameliorate the performance
and the accuracy of the best model (ANFIS-FC (M4-vii)); in the other hand, the full input give
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the best results for the optimal models M2, M3, and M4 for both ANFIS- GP and ANFIS-
FCM.

In overall, the cluster based ANFIS-FCM and ANFIS-SC models perform superior to the
ANFIS-GP in WQI modelling. The main advantage of these cluster based ANFIS models is
their less complexity in comparison to the GP based models. ANFIS-FCM and ANFIS-SC
models which comprised less number of parameters take less computational time than the
ANFIS-GP model in modelling WQI in the current study. For the M4 data set and input
combination (viii), the optimal ANFIS-GP model has 8 inputs and 2 Gumbel membership
functions (gbellmf) for each input, so it has 8x2×3 = 48 premise parameters. Additionally, it
has constant output and therefore 28 rules comprising 256 consequent parameters. Totally, the
best ANFIS-GP model has 48 + 256 = 304 parameters. The ANFIS-FCM model has 3 clusters
representing 3 Gaussian membership functions comprising 2 parameters for each input. It has
8x3×2 = 48 premise parameters. Additionally, it has linear output and 3 rules comprising
3×(8 + 1) = 27 consequent parameters. Totally, the best ANFIS-FCM model has 48 + 27 = 75
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parameters. Similar to the cluster based ANFIS-FCM, the ANFIS-SC model with 0/7 radii has
2 clusters representing 2 Gaussian membership functions comprising 2 parameters for each
input. It has 8x2×2 = 32 premise parameters. Additionally, it has linear output and 2 rules
comprising 2x(8 + 1) = 18 consequent parameters. Totally, the best ANFIS-SC model has 32 +
18 = 50 parameters. Hence, it should be noted that the cluster based ANFIS-FCM and ANFIS-
SC models which are simpler than the ANFIS-GP model can be successfully applied for
modelling WQI.

4 Conclusion

By the present study, the ability of three different hybrid neuro fuzzy methods, ANFIS-GP,
ANFIS-FCM and ANFIS-SC, in modelling WQI by using monthly water quality parameters
measured in Selangor river basin, Malaysia was investigated. For better evaluation of the soft
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computing methods, cross validation was employed by dividing data into 4 equal parts. Eight
different input combinations were decided via applying correlation analysis and each model
was tested four times for each input combination. From the comparison results, the following
results can be drawn:

– All three hybrid models provided good estimates for the WQI at studied river basin.
According to the mean of the applied statistics, the cluster based ANFIS-SC and ANFIS-
FCM performed superior accuracy to the ANFIS-GP.

– The best ANFIS-SC model (input combination viii) increased the RMSE, MAE and R2

accuracy of the best ANFIS-FCM (input combination viii) by 46, 39, 1.7% and the best
ANFIS-GP (input combination vi) by 69, 65 and 7.4, respectively.

– It was found that the cluster based ANFIS-FCM and ANFIS-SC models have much less
parameters resulting less computational time in comparison to the ANFIS-GP models.

– Among the applied models, the ANFIS-SC models were found to have better accuracy
than the other hybrid models and should be preferred in modelling monthly WQI.

– Overall, the applied hybrid fuzzy intelligence model demonstrated a robust and authori-
tative model for WQI prediction and more for the environmental river engineering
practice, particularly for Selangor River located in tropical environment, Malaysian
region.

In this study, the ability of three different neuro fuzzy methods in modeling water quality
parameters was examined for the Selangor river basin. In future studies, more data from
different areas may be used for deriving more concrete conclusions. The applied methods may
also be compared with other soft computing techniques such as support vector machine,
extreme learning machine etc.
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