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Abstract Intelligent robotic welding requires automatic find-
ing of the seam geometrical features in order for an efficient
intelligent control. Performance of the system, therefore,
heavily depends on the success of the seam finding stage.
Among various seam finding techniques, active laser vision
is the most effective approach. It typically requires high-
quality lasers, camera and optical filters. The success of the
algorithm is highly sensitive to the image processing and fea-
ture extraction algorithms. In this work, sequential image pro-
cessing and feature extraction algorithms are proposed to ef-
fectively extract the seam geometrical properties from a low-
quality laser image captured without the conventional narrow
band filter. A novel method of laser segmentation and detec-
tion is proposed. The segmentation method involves averag-
ing, colour processing and blob analysis. The detection meth-
od is based on a novel median filtering technique that involves
enhancing of the image object based on its underlying struc-
ture and orientation in the image. The method when applied
enhances the vertically oriented laser stripe in the image which
improves the laser peak detection. The image processing steps

are performed to make sure that the laser profile is accurately
extracted within the region of interest (ROI). Feature extrac-
tion algorithm based on pixels’ intensity distribution and
neighbourhood search is also proposed that can effectively
extract the seam feature points. The proposed algorithms have
been implemented and evaluated on various background com-
plexities, seam sizes, material type and laser types before and
during the welding operation.

Keywords Seam finding . Robotic welding . Computer
vision . Feature extraction . Intelligent sensors . Robotic
application

1 Introduction

Research in vision-based intelligent robotic welding is one of
the most rapidly growing areas for robotic applications.
However, to a large extent, teaching strategy of the robot for
the welding task remains ‘teach and playback’. Hence, fully
automated robotic welding system is yet to be effectively
achieved. This is due to harsh environmental conditions of
welding and various factors such as welding spatter and arc
light disturbance, welding material types, distortions due to
welding heat generation and varying structure of the welding
seams [1]. Intelligent robotic welding system comprises of
three basic components: (1) tracking and profiling of welding
seam and pool, (2) robot trajectory planning and control and
(3) parameter control of welding process []. Robot trajectory
planning and control involves teaching of the robot to follow
the welding seam path, at a specific welding torch orientation,
and perform the required welding task efficiently. Intelligent
methods for the path planning have been proposed by re-
searchers [–4]. The path to follow and the orientation of the
torch to be set depend on the welding process parameters and
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the welding seam geometrical properties. To achieve high-
quality welding, the process parameters need to be effectively
controlled. Researchers have proposed various techniques to
control the process parameters [5–8]. However, these tech-
niques depend on the geometrical measurements of the
welding bead and seam before, during and after the welding
process. The geometrical measurements are obtained through
the tracking and profiling of welding seam and pool. Methods
in tracking and profiling welding pool and seam can be
categorised into (i) optical sensing and (ii) non-optical sensing
methods. One of the most popular non-optical sensing method
is the through-arc sensing method [1, 8, 9]. Optical sensing
method can be further categorised based on either passive
vision or active visionmethods. The distinction between these
two methods relies on the use of the optional light source. In
the active vision, a camera device and a light source are used,
while in the passive vision, two camera devices are used with-
out a light source. In passive vision, due to the complex nature
of the welding environments, wide range of methods had been
proposed by researchers [10–17]. Using the passive vision
system, two set of information can be obtained: (1) the seam
profile which can alternatively be acquired by using active
vision and (2) the welding pool profile which can only be
acquired with passive vision. More so, passive vision systems
can be used to acquire the seam path holistically as oppose to
active vision which only provide one point at a time.
Numerous techniques have been proposed for the image pre-
processing, seam profiling and weld pool profiling of the pas-
sive vision system. For the welding seam profiling, various
methods are proposed such as grey-level distribution methods
[10] that consider the darkness characteristic of the welding
seam region, conventional edge detection methods like Canny
edge detection [17], Sobel edge detection [11] that extract
edges in the image from which the seam is then extracted
and template matching methods [16] that searches for a
known pattern in an image by using a predefined template
which identifies the seam. For the welding pool profiling,
the basic task is detecting the edges of the welding pool from
which the pool dimensional features can be determined.
Various methods have been proposed by researchers to detect
the pool edges. Among which is the use of conventional edge
detection methods [12] such as Canny and Sobel edge detec-
tion. Another notable technique is the histogram analysis
methods [13] that analyse the histogram of the welding pool
image in order to obtain the boundaries of the pool as the
edges. In [14, 15], an analysis model and experimental tech-
nique on computing seam finding accuracy by using passive
vision has been proposed; the serial work makes the
path planning a further step forward in the passive vision
field.

On the other hand, in the active vision system, the concept
of triangulation is applied to find the seam geometrical prop-
erties. It employs a camera and a light source device to capture

the image of the welding seam. A comprehensive survey of
the active vision methods of seam finding has been performed
[18]. Seam finding in the active vision can be simply broken
down into two tasks: detecting the laser stripe in the image and
extracting the feature points from the detected laser line that
identify the seam.

The maximum intensity is the most common feature which
is used for laser stripe extraction. Due to the high intensity
values (higher brightness) at the region of the laser stripe,
many authors proposed a simple technique which explores
this characteristic of assuming maximum intensity to be the
laser stripe position while extracting the laser stripe region
from an image [19–24]. The idea behind the maximum inten-
sity strategy is to consider every row or column separately as a
1D signal depending on the orientation of the laser stripe as
either horizontal or vertical. For horizontal laser stripe, col-
umns in the image are treated independently. The row position
in each column that has the maximum intensity value is se-
lected as a point in the laser stripe. Combining these points
from all the columns together makes up the position of the
laser stripe profile in the image. Sometimes, instead of taking
one point with peak intensity, multiple peaks are chosen to
produce a stripe of more than one pixel width, and the peaks
are subsequently discarded based on definite criteria [19, 20,
23]. In [20, 23], the middle pixel among the multiple peaks is
selected as the laser stripe profile location. In [21], after
searching and combining pixel points with maximum intensi-
ty, those points caused by false imaging are rejected by using
temporal and spatial continuity constraints and the profile is
obtained by using linear interpolation and Gaussian filtering.
In [22], five horizontal laser stripe lines are extracted by the
maximum intensity method. The lines are extracted by sorting
the intensity values sequentially in a decreasing order along
each column and then taking the first five values as the posi-
tion of the peaks for the five lines in that column. Instead of
the traditional maximum intensity, a more accurate method is
to obtain the peak position at sub-pixel accuracy [25–28]. The
methods consider the imperfection of the laser stripe distribu-
tion which could make a pixel position of the peak erroneous.
To accurately detect the peak at sub-pixel level, methods such
as Gaussian approximation [25], centre of mass [25], linear
interpolation [25], Blais and Rioux [24] detectors and para-
bolic estimator [25] are used. The distinction between these
methods depends on the assumption of the intensity distribu-
tion of the laser stripe. Gaussian approximation and centre of
mass assumed that the spread of intensity values across the
stripe conforms to a Gaussian distribution. Linear interpola-
tion assumes that a simple, linear relationship defines the
spread of intensity values across the stripe. A comparative
analysis on the effectiveness and accuracy of these sub-pixel
methods was performed in [25]. The authors concluded that
these methods display comparable performance within the
same range.
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After the laser stripe profile extraction, the turning point
and corner points are then extracted as feature points. In an
ideal condition, extracting these points could be a simple task
of performing turning points or corner point detection.
However, in reality, the extracted laser stripe is far from its
ideal shape. The extracted stripe may experience discontinu-
ities along the lines, and the noise could suppress the feature
points into higher or lower than their actual values. This
makes it more challenging to accurately detect these points.
Researchers have proposed methods to efficiently detect these
feature points. The use of split and merge algorithm [22, 29],
second central difference (second CD) [20, 30], local maxima
and minima [21, 24, 31–33] and rule-based techniques [27,
28, 34–37] have proven to be effective in extracting the fea-
ture points. In [22], the researchers make use of the combina-
tion of split and merge [38] and template matching method to
determine the feature points. In the split and merge method,
approximate straight line is generated from three points ac-
cording to the turning angle between the points. The points
in the stripe profile are scanned by considering three points at
a time. A point is discarded as noise if the turning angle be-
tween the two lines, which are joining the three points, ex-
ceeds a certain threshold. The feature points are then extracted
by comparing the generated straight line with a welding joint
template. In [29], similar strategy of selecting the feature
points based on computed turning angle of a point is proposed.
The feature points are determined by set of rules based on the
position and value of the turning angle at each point. For each
of the feature points, there exist associated rules that define the
nature of the point. In [20], a method based on the second CD
of the row index of each point in a horizontally oriented laser
stripe profile is proposed. First, the second CD is computed
for all the points in the laser stripe. Based on the values of the
second CD, a point scanning algorithm is proposed that
searches for the feature points that meet predefined criteria.
In [30], unlike in [20], a group of points that have CD value
greater than the 70 % of the maximum CD value is selected
and the centre point in the group is taken as the position of the
feature points. The feature points can also be extracted as the
local maxima and minima of the second derivative of the laser
stripe profile [21, 24, 31–33]. Themethod involves computing
the second derivative of the laser stripe, searching for the local
minima and maxima and selecting the points that correspond
to the local maxima and minima as the feature points. Another
notable technique for extracting the feature points is the rule-
based approach method [27, 28, 34–37]. The method involves
approximation of the extracted laser profile into line segments.
The line segments are labelled according to predefined
welding segments. The labelled line segments are systemati-
cally combined to form a feature string. Based on certain de-
fined criteria and classification methods, the feature string is
interpreted to be one of the predefined welding joint type and
the feature points are extracted from the joint.

In the aforementioned methods, single-channel images
(grey images) are used because of the conventional narrow
band filter usually installed on the camera to increase its sen-
sitivity to the laser. The narrow band filter when used during
welding may reduce the laser contrast with respect to the
welding arc noise. This is because the most dominant noise
in welding environment is the white light which is produced
by the welding arc. As the white light contains all wavelength
of light, the filter could not suppress the noise in the laser
spectral band due to white light. This makes the camera to
capture the laser and the white noise with similar intensity
thereby reducing the laser contrast with respect to the welding
arc noise. Also, the extracted position profile of the laser stripe
could be noisy which affects adversely the performance of the
feature point detection. Only few researches propose an addi-
tional processing to filter out the peaks. Furthermore, majority
of the feature point extraction methods consider the feature
points as corners and employ corner detection methods as
the feature extraction. However, in the presence of a noise or
low-quality laser, false corners are inevitable, and this can lead
to catastrophic result. In this work, based on these issues, we
proposed four major contributions: (1) sequential image pro-
cessing steps that use the images of a low-quality cheap laser
and accurately determine the position of the seam in it, (2) a
proposed active vision system design without using a narrow
band filter but with an additional software-based colour pro-
cessing to increase the laser contrast with respect to the
welding arc noise, (3) a novel laser profile pre-processing that
involves enhancing the laser image with a novel oriented me-
dian filter. This filter enhances an object based on its underly-
ing structure and orientation in the image. The method en-
hances the vertically oriented laser stripe in the image which
improves the laser profile extraction; and (4) a proposed fea-
ture extraction algorithms that involves pixel neighbourhood
search based on a detected laser base line. The points are
extracted independently and irrespective of their turning angle
or strategic position.

In the next section, the details of the system design and the
proposed algorithms will be discussed followed by the result
and discussions.

2 The proposed algorithm

2.1 System configuration

The proposed system comprises of a laser light source, a cam-
era device and a welding robot. For the light source, a 5-mW
laser with a wavelength of 650 nmwas used. This wavelength
was chosen according to the spectrum analysis of the welding
process as shown in Fig. 1a. From the figure, it is evident that
the arc light which has components in all over the spectrum is
at its weakest intensity in the wavelength range of 620–
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720 nm [10]. A DFK 23G274I Sony CCD GigE industrial
camera device with a resolution of 1600 × 1200 was used.
KUKA industrial welding robot coupled with CR-4 controller
was used. Figure 1b shows the system configuration.

2.2 Proposed algorithm

The proposed algorithm comprises of two steps: (1) detection
of the laser base line that represents the laser stripe without
deformation and (2) seam feature point extraction. The aim of
these algorithms is to extract the seam features that can be
used for automatic teaching of the welding robot before the
welding and for online tracking and control of the welding
robot during welding process. In the following sections, the
details of these steps will be described.

2.2.1 Laser base line detection

The proposed processing stages for detecting the base line
consists of three steps: a pre-processing step, a laser peak point
detection step and a line fitting step correspondingly.

Step 1: Pre-processing

The pre-processing stage is performed in order to remove
unwanted objects in the image. Because the colour of the laser
light in the image is predominantly red, a pre-processing tech-
nique is proposed that utilises this property. Usually, a narrow
band optical filter is used with the camera to provide more
sensitivity and selective selection of the red light with specific
wavelength to pass through the camera. However, use of these
filters is not flexible and during welding, it may reduce the

laser contrast with respect to the welding white noise which
makes it difficult to be separated from the laser stripe. To
demonstrate this, Fig. 1c, d shows the images captured with
a narrow band filter and that captured without the filter respec-
tively. The high red contrast of the laser in Fig. 1d can be
observed from the image. Therefore, a software-based colour
filtration is proposed to segment the laser stripe. The original
image to be used is depicted in Fig. 2a. The process starts with
the application of an averaging filter described by Eq. (1) in
order to spread the laser red colour around neighbouring
pixels. The average filtering process is necessary to smoothen
high intensity saturated pixels (nearly white coloured) that
may be present in the centre of the laser due to the non-
uniform intensity of the laser light and also in order to sup-
press high intensity noises in the background. The result of
applying the averaging filter is shown in Fig. 2b.

F i; jð Þ ¼ 1

LW2

X LW

i

X LW

j
I i; jð Þ ð1Þ

where LW=10 and it is the maximum expected laser width,
I(i, j) is the image intensity at row i and column j and F(i, j) is
the filter result at row i and column j.

The processed image is then converted from an RGB col-
our space into hue, saturation, value (HSV) colour space. This
is a major step in order to extract the red colour of the laser line
from the image. The hue represents the colour itself. The value
of the hue range is between 0 and 360 (0 to 1 if normalised);
saturation indicates the degree to which the hue differs from a
neutral grey, or simply, it indicates the purity of a colour. The
saturation values varies from 0, which means no colour satu-
ration (pure white), to 1 (pure colour), which is the fullest
saturation of a given hue at a given illumination. The value

Fig. 1 a The spectral analysis of
GMAW for low-carbon steel of
Q235 [10]. b System
configuration showing the
camera, robot and welding
machine. c Welding image with a
narrow band filter and d welding
without the narrow band filter
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is the illumination level or measure of the level of brightness.
After converting the processed image into HSV colour space,
the resulting HSV channels are shown in Fig. 2. It can be
observed from the hue image of Fig. 2c that the red laser line
region has the least hue value, represented by black in the hue
image. And, the background of the input image has higher hue
values represented by the brighter colour. The saturation im-
age of Fig. 2d also shows red laser region of which the
brightest colour indicates the purity of the colour combina-
tions of the input image. The value image of Fig. 2e depicts
the illumination of the input image with the laser region show-
ing higher illumination. The three HSV channels are
thresholded by using Eqs. (2), (3) and (4). Three masks are
generated shown in Fig. 2f, g, h respectively. The final exclu-
sion mask is generated by using (5) as shown in Fig. 2i. The
threshold values for hue channel are chosen to cover all the
range of red region in the hue value ranges. The saturation and
value thresholds are chosen to allow poor contrast laser stripe
typical characteristics of a low-quality laser to be accommo-
dated.

M 1 ¼
H i; jð Þ < 0:1 1
H i; jð Þ > 0:9 1
otherwise 0

8<
: ð2Þ

M2 ¼ S i; jð Þ > 0:2 1
otherwise 0

�
ð3Þ

M3 ¼ V i; jð Þ > 0:2 1
otherwise 0

�
ð4Þ

M ¼ M 1∩M 2∩M 3 ð5Þ

where M1, M2 and M3 are the thresholded masked for
theH, S and V channels respectively, i , j is the row and column
numbers and M is the final exclusion mask.

It can be observed that the exclusion mask has multiple
binary objects. Hence, there is a need to remove all other

binary objects in the mask except one object which includes
the laser line. Two steps are followed in order to have a mask
with only one object. The first step is applying morphological
dilation operation on the mask to close and connect discon-
nected object that may belong together. The second is apply-
ing blobbing analysis on the resulting mask to remove all the
binary objects, except the longest object. The final exclusion
mask is shown in Fig. 2j. The three-channel RGB image need
to be converted into single channel that can be masked. The
conversion is either by converting to grey image or selecting
the red channel depending on the laser quality. The resulting
single-channel image is shown in Fig. 2k. The generated ex-
clusion mask in Fig. 2j is then applied to the single-channel
grey image. The final segmented image after the masking
operation is further filtered with a conventional square median
filter with a kernel of 5 by 5 in order to filter some of the white
and long trail noises that may be created by the reflection of
the laser light on an object or due to the welding arc light
spatter. The resulting image is shown in Fig. 2l. It can be
observed that some of the small high-frequency reflections
of the input image are suppressed and also the salt-and-
peppered particle noises are removed. This resulting image
is the image that would be used in the subsequent image pro-
cessing steps.

Step 2: Laser peak detection

The laser peak detection is aimed at extracting the profile
pixels that will represent the laser stripe during the feature
point extraction stages. Typical intensity distribution of the
processed image for two of its rows marked in Fig. 3a as
600th and 700th which are shown in Fig. 3e. It can be ob-
served that each row has its peek pixel somewhere within the
laser stripe region. To extract the peak in each row, the max-
imum intensity pixel is taken in each row as the position of the

e f g h

i j k l 

b c da 

Fig. 2 a Original image, b the
averaged image of Fig. 2a, c hue
channel of the input image, d
saturation channel of the image, e
value channel of the input image,
f generated hue mask (M1), g
generated saturation mask (M2), h
generated value mask (M3), i the
mask generated after thresholding
HSV masks, j the processed mask
after morphological operation and
blob analysis, k the grey image of
the RGB input image and l the
masked segmented image after
colour processing and median
filtering
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laser stripe in that row. However, as shown in Fig. 3e, there
can be more than one maximum pixel of the same intensity. A
peak extraction algorithm is proposed to extract these peaks.
The algorithm is given by algorithm 1 (appendix). The algorithm
only considers peaks that are greater than 80% of the maximum
intensity level. If a peak is less than the given threshold, the
peak position is assigned to be zero and will not be considered
by the subsequent processing steps. The extracted peak line
from this algorithm is shown in Fig. 3b.

It can be observed that the extracted peak line has a lot of
unnecessary breaks along its length. This is due to noisy
spikes in the rows of the processed image. Therefore, in order
to alleviate this problem of the noisy spikes, a novel approach
is proposed which effectively improves the peak detection.
The proposed approach is based on a novel oriented median
filtering to enhance an oriented object in a noisy image. This
new approach will treat the horizontally oriented objects as
spurious noises and then effectively suppress the noisy effect
that can deteriorate the performance of the peak extraction.
The conventional way of applying the median filter is to select
a suitable square kernel size similar to that used in the previous
section (as shown in Fig. 2l). The selection of the kernel size
determines the neighbourhood around the pixels to be consid-
ered and do not consider the underlying structure present in
the image. As we have an image with a vertical object struc-
ture, the kernel size of the proposed median filter is selected as
vertically oriented long rectangular kernel with LW× 200
neigbourhood, where LW is the expected maximum width of
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Fig. 3 a The processed image from Fig. 2l. b Typical intensity
distribution of the two rows marked in a. c The peak line extracted
from the image. d The enhanced image using vertically oriented median

filter. e Typical intensity distribution of the enhanced image. f The peak
line extracted from the enhanced image

Table I Details of the real-time test in the study

Image processing average running time 300 ms

Image capture rate Four images per second

Camera resolution 1600 × 1200

Video frame rates Five frames per second

Robot travelling speed/welding speed 0.01 m per second

Welding machine wire feed rate 40 m per second
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the laser. The size of the kernel was determined experimental-
ly in order to produce an enhanced laser stripe in the image.
The result of applying the proposed vertically oriented median
filter to the processed image is shown in Fig. 3c. As it can be
seen from the results, the proposed median filter emphasises
the vertical laser line object in the image and attempt to cancel
any object shorter than its vertical length. The effect of the
filter on the intensity distribution of the image is also shown in
Fig. 3f. The filter has successfully reduced some of the noisy
spikes located outside of the laser stripe region. As a result, the
width of the intensity distribution is reduced and the distribu-
tion has groups of spikes that can be easily differentiated. The
ultimate effect of the proposed filter is clearly shown in the
extracted profile result as shown in Fig. 3d.

Step 3: Line fitting

The extracted peak point positions are then fitted to a
straight line by using polynomial curve fitting [39] algorithm.
The profile points may contain empty rows with no points due
to the rejection of pixels with maximum less than the given
threshold in algorithm 1 (appendix). This empty rows are
treated as outliers and will not be considered by the line fitting
algorithm. The result after the line fitting algorithm proposed
in [39] is shown in Fig. 4. The line returned by the line fitting
algorithm is the detected position of the laser base line as
shown in Fig. 4.

2.2.2 Seam feature point extraction

The terminologies used for the feature points in this section
are explained in Fig. 5. It can observed that the deformation
region is the region along the laser stripe that contains all the
three feature points. The proposed image processing steps for
extracting the feature points from the detected laser stripe
includes (a) vertical ROI determination, (b) junction points

labelling and grouping, (c) horizontal ROI determination and
(d) determination of the feature points. The vertical ROI is
extracted along the extracted laser line in order to determine
the top and bottom feature points. On the other hand, the
horizontal ROI is extracted in order to extract the seam peak
feature point. It is vertically bounded by the top and bottom
feature points.

Step 1: Determination of vertical ROI

From the original image in Fig. 2a, it is evident that the
feature extraction process can only affect the region where the
laser stripe is found. Marking this region as the ROI will
greatly simplify the feature extraction. The vertical ROI is
determined by cropping the processed filtered image (shown
in Fig. 2l) around the region of the previously detected laser
line. Equation (6) is used for this purpose.

ROI i; cð Þ ¼ I i; jð Þ ð6Þ

where p−
LW
2

≤ j≤pþ LW
2

; 0≤ i≤M ;

where LW is the expected laser width and M is the number of
rows in the image I. I(i, j) is the processed image intensity at
row i and column j. ROI(i, c) is the ROI image. p is the column
index of the previously detected laser line in the original
image.

Figure 6a, b shows the ROI marked in the image and the
extracted ROI image respectively. In order to clearly depict the
effect of the vertical ROI, the ROI is marked on a different
image containing a tilted laser object and the images areFig. 4 Detected laser base line positions

Top point

Bottom Point

Seam peak
Deformation 

region

Fig. 5 The welding seam joint
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shown in Fig. 6c, d. It can be observed that the ROI will trim
some of the laser deformation region.

Step 2: Labelling, grouping and selection of junction
points

Junction points are disjointed points along the laser stripe
profile that correspond to the pattern produced due to the
projection of the laser light on a welding joint. They are sim-
ply the points within the laser deformation region from which
the top and buttom feature point can be extracted. However,
due to inherent noise, multiple junction point groups can be
found. Figure 7 shows an example of labelled junction point
groups on an extracted laser stripe. Three groups of junction

points are shown in the Fig. 7a. The first and third groups,
which are labelled as ‘1’ and ‘3’ respectively, are obviously
false junction groups which are due to inherent noise. On the
other hand, the second group labelled as ‘2’, is the true junc-
tion point group that corresponds to the laser deformation
region. Algorithm 2 (appendix) is used to label a laser stripe
profile point as a junction point belonging to a particular
group. The main idea of determining a junction point is to
use the projection of the point on the fitted laser line as shown
in Fig. 7b. The farther the point from the line, the more likely it
will be labelled as a junction point.

According to the junction group selection criteria of algo-
rithm 2, a junction group is selected by using three criteria as
follows: (a) the number of points in the group, (b) the position
of the group along the vertical fitted line and (c) the average
maximum intensity of the group. It is evident that in moving
along the laser stripe region, the deformation of the welding
joint is presumed to be relatively large size of at least 5 pixels
height; hence, all junction groups with number of points less
than 5 pixels are discarded. Also, the deformation that corre-
sponds to true junction group is always anchored by vertical up
and down line stripe segments, hence, all junctions positioned
at the beginning or at the end points in the vertical line are
discarded. The remaining junction groups are evaluated based
on their average maximum intensities. The average maximum
intensity of a junction group is calculated by using (7).

Average Max ¼ 1

N

X N

i
max1≤ j≤LW F JP ið Þ; jð Þ ð7Þ

where N is the number of points in the junction points group
JP, LW is the maximum expected laser width and F(i, j) is the
processed image.

The group among the remaining groups with the least
average maximum intensities is selected as the junction
group. The result after applying algorithm 2 to the ROI
image is shown in Fig. 8. In this example, there are two

a b c d

Fig. 6 a The ROI region marked
in the original image and b the
extracted ROI. c The ROI marked
in another image and d the
extracted ROI
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b

1
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points 
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Fitted 

Laser 

line 

Fig. 7 a Labelled junction points on laser profile. b Fitted laser line with
labelled junction points
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candidate junction groups labelled as 1 and 2 respective-
ly. The false junction group is marked in red rectangle,
and the selected junction group is marked in green. It can
be observed that, according to the previously stated rules,
the junction group 1 from Fig. 8 is selected even though
it has an average maximum intensity of 86.8 that is great-
er than that of group 2 with average maximum intensity
of 55.0. This is because of the position of group 2 that is
at the end of the stripe which violates one of the selection
criteria. To further demonstrate the effect of algorithm 2,
the algorithm is tested on a more complex ROI extracted
from a different image as shown in Fig. 9a. Despite the

number of junction groups present in the ROI, the algo-
rithm was able to successfully apply the selection criteria
and select the group 9 as the correct junction group as
shown in Fig. 9b.

From the selected junction group, the first and last points in
the group correspond to the top and bottom feature points. The
two selected points are marked in Fig. 10a.

Step 3: Determination of horizontal ROI

a b

Fig. 10 Marked top and bottom point; horizontal ROI marked by the
rectangle a before rotation correction and c after correction
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a b

Fig. 9 Complex ROI with many junction groups. a Original ROI image
and b marked junction points with their respective average maximum
intensities

86.81

55.02

86.81

55.02

Fig. 8 Marked junction points with their respective average maximum
intensities in ROI image and zoomed out from the ROI image

d e

f

c
ba

Fig. 11 Demonstration of the effect of rotation on the horizontal ROI
extraction with the original image, marked ROI on the original image and
extracted ROI: a–c without rotation correction and d–f with rotation
correction
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The vertical region of interest marked previously only
selects the region around the detected laser base line and
does not account for the wider region around the
deformation region. As such, a new ROI that will cover
wider region around the stripe deformation needs to be
selected in order to correctly identify the seam peak
point. The new ROI can be extracted horizontally from
the original processed image (shown in Fig. 2l) by using
the knowledge about the position of top and bottom fea-
ture points. This is necessary in order to find the farthest
point in this region that corresponds to the seam peak
point of the welding joint. To properly select the region,
the orientation of the laser stripe line must be taking into
consideration. Hence, before the extraction, the tilt in the
original image must be removed. The correction is

performed by rotating the image with the inverse of the
tilt angle θ which is calculated by using Eq. (8). The
horizontal ROI is then determined by using Eq. (9).

θ ¼ −tan−1 Topx−Bottomxð Þ
.

Topy−Bottomy

� �� �
ð8Þ

ROI c; jð Þ ¼ I
0
i; jð Þ ð9Þ

Top0y≤ i≤Bottom0
y; minimum Top0x; Bottom0

xð Þ≤ j≤N ;

where θ is the tilt angle of the laser stripe with regards to
vertical axis, Topy, Top′y, Bottomy and Bottom′y are the x and
y values of the top and bottom points before and after rotating
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with θ respectively. N is the number of columns in the image I.
I′(i, j) is the processed image intensity at row i and column j
rotated with the angle θ. ROI(c, j) is the ROI image.

The marked horizontal ROI after the rotation correc-
tion is shown in Fig. 10b. In order to demonstrate the
needs of correcting rotation before the horizontal ROI
extraction, an image with a very wide seam and a rotat-
ed laser stripe is used as shown in Fig. 11. Due to the
slight rotation, if the horizontal ROI is extracted without
correcting the rotation as shown by Fig. 11a–c, some of
the laser deformation region may not be selected and
could lead to the deselection of the seam peak point
region. However, the ROI will be properly extracted if
the rotation is corrected first before the extraction step
as shown in Fig. 11d–f.

Step 4: Detection of seam peak point

The seam peak point is the uttermost or farthest point
from the laser stripe line that correspond to the end of
the laser obstruction on the welding seam. The position
of the point is crucial because any small background
noise could deter or completely change the position of
the point and subsequently change the orientation of the
whole seam from the laser stripe perspective. Algorithm

3 (appendix) is used in determining this point. First, the
profile points are extracted from the horizontal ROI
(shown in Fig. 12a) by using algorithm 1, and the
resulting image is shown in Fig. 12b. From the extracted
profile, breaks and some out of place noisy points can
be observed. These points are filtered with algorithm 3.
The algorithm works by dividing the laser stripe profile
into two parts (upper and lower) and scan each part
independently. Since the top and bottom feature points
already determined are in the extracted profile with top
point being the first point in the stripe and the bottom
point being the last point. Hence, the first point in the
upper part is the top point and last point in lower part is
the bottom point. Therefore, the upper part is scanned
by starting from the first point to its last point. On the
other hand, the lower part is scanned from the last to its
first point. During the scanning, the change in column
index between a row and its previous row is checked in
order to determine whether it is within the given limit. If
it is out of the limit, the column index of the current row
i s c h a n g e d t o t h e l im i t v a l u e . T h e l im i t o f
−LW ≤Column index ≤ LW is chosen. This is based on
the assumption that for consecutive rows, the laser pro-
file point column position in these rows should be as
close to each other as possible, at least within the laser
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width. After the scanning, two new profiles will be gen-
erated from the two parts. The two profiles when com-
bined makes up the processed profile shown in Fig. 12c.
The two profiles are then fitted into a straight line by
using the polynomial fitting algorithm. The result is
shown in Fig. 12d. The intersection of the two lines is
selected as the detected peak shown in Fig. 12e. It can
be observed that the original extracted profile (shown in
Fig. 12b) have been filtered and the outlier points
corrected by drawing the points closer to the profile as
shown in Fig. 12c. Figure 12f shows elaborately the
relationship between the original profile, processed pro-
file, fitted lines and the detected seam peak point when
plotted on a graph.

After the laser stripe detection and the feature point
extraction stages, the top, bottom and seam peak feature

points have been successfully extracted as shown
Fig. 13.

3 Results and evaluation

The proposed algorithm is implemented on aWindows 8 com-
puter with Intel Core i7 2.0 GHz processor, 8 GB RAM. The
computer is directly connected to the robot and the camera.
The algorithm performance is evaluated in two ways: (1) im-
age processing results’ evaluation and (2) real-time robot mo-
tion results.

To evaluate the effectiveness of our proposed image
processing and feature extraction method, four different
set of images are used: (1) images containing rotated
laser stripe, (2) high-quality laser with strong reflection
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images, (3) low-quality and complex background laser
images, (4) welding images with narrow band filter and
(5) welding images without narrow band filter. The aim
is to test the robustness of the proposed approach
against rotation, poor-quality laser, background com-
plexities, reflection and welding noise. For the rotation,
the results are shown in Fig. 14. Because part of the
algorithm implementation relies on vertical objects, the
rotation test is important to know how much the algo-
rithm will be affected when the laser is rotated. The
images contain laser rotated from −30° to 40° with
anti-clockwise been the positive direction. From the
results, it can be observed that as the rotation increases
the detected base line got slightly out of phase.
However, due to robustness of the feature extraction
stage, the position of the feature points is not affected.
The algorithm fails when the rotation reaches 40°.
However, the results indicate that the rotation of the
laser up to a certain degree does not affect the result
of the extracted seam feature points.

The results for the high-quality laser with strong re-
flection images are shown in Fig. 15. Due to the nature
of the laser, the reflection in the image is very strong.
However, the algorithm has successfully detected the
seam positions in these images. The result in Fig. 15c
shows the extracted seam peak points which is slightly
not at the expected location. This is because, during the
seam peak extraction stage, the outmost laser pixels in
this region due to their slightly lower intensity will be
assumed to be part of reflections and thresholded.

Figure 16 The result for the low-quality laser images.
The algorithm successfully detects all the seam feature
points in all the images except that of Fig. 16d. This is
because the laser in this image is badly disrupted by the
strong lightening source. It is important to note despite
the complexity of Fig. 16c and the strong illumination
of Fig. 16f images that the algorithm was able to detect

the feature points in these cases. The results for welding
images captured with and without the narrow band filter
are shown in Figs. 17 and 18 respectively. The distinc-
tion between these two set of images can be examined.
For the images captured without the filter, the red laser
is well pronounced and the proposed algorithm was able
to accurately extract the feature points in them despite
the strong arc white noise present. For the images with
the filter, the laser is somehow normalised with the
welding noise and i ts contrast great ly affected.
However, the proposed algorithm was able to extract
the feature points accurately. This can be attributed to
the proposed oriented median filtering that suppress the
horizontally oriented randomly distributed welding
noise
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Fig. 18 Welding images with a
narrow band filter result
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In order to evaluate the effectiveness of the proposed
method by using the robot motion, the algorithm was
tested in real time with the robot. During the test run,
the extracted image coordinates were converted to the
robot world coordinates by using Eqs. (10), (11) and
(12). Equation (10) was obtained after camera calibra-
tion, where the camera extrinsic and intrinsic parame-
ters were determined.

s
u
v
1

2
4

3
5 ¼

2006:68 0 791:77
0 2006:10 590:38
0 0 1

2
4

3
5

0:09 −1:00 −0:04
−1:00 −0:09 0:01
−0:01 0:04 −1:00

2
4

3
5

X
Y
2:5

2
4

3
5þ

−8:24
139:88
110:96

2
4

3
5

ð10Þ

XR ¼ XTCP−X ð11Þ

YR ¼ YTCP−Y ð12Þ

where (u, v) are the extracted image coordinates, (X, Y) are the
converted camera coordinates, (XTCP,YTCP) are the current
position of the tool centre point (TCP) and (XR ,YR) are the
converted final robot coordinates.

The details of the real-time test relevant to this work is
shown in Table I below.

From Table I, it can be observed that the average
image processing running time was found to be just
about 300 ms for an image with 1200 × 1600 size.
This means that it can process at least three images in
1 s. For a welding process which is usually a very slow
process (like the 0.01 m/s used, which depends on the
welding scenario), processing of three images in a sec-
ond is practically contented.

The robot was first programmed manually to approx-
imately follow the centre path of the test curvature
workpiece as shown in Fig. 19. The trajectory of the
robot teach and playback is shown in Fig. 19 as a
dashed line. For the same path, the robot has been guid-
ed by the proposed algorithm and the extracted seam
path is labelled as the detected seam left and the detect-
ed seam right. It is obviously evident from the figure

that the proposed seam finding method is successful in
extracting the seam path. From the extracted seam path,
the centroid coordinates in the path can be computed as
the robot path. Figure 20 shows the comparison of the
computed robot path with the actual manually pro-
grammed robot path. The two paths could be observed
to approximately fit each other.

4 Conclusion

In this paper, we present a novel method that can effec-
tively find the seam geometrical information by using
active vision. It utilises a combination of colour pro-
cessing, median filtering and pixel neighbourhood
search. It was implemented and tested in various back-
ground complexities, laser type and seam sizes. It has
proven to be effective with less expensive low-quality
laser images and robust to reasonably rotated laser
stripes. Using the proposed approach, we have been
successful in implementing an active vision system with
the following advantages: (1) does not use the conven-
tional narrow band filter for the laser wavelength selec-
tion which results to cost reduction and increased laser
contrast, (2) be able to work with very low-quality laser,
(3) robust to laser rotation and (4) effective in extracting
the required geometrical features.
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Appendix

Algorithm 1:

Laser Line Peak Detection (I, Laser_Width, Threshold)

Parameters List:

Laser_Width: expected width of laser

Threshold:  minimum laser intensity

Laser_Line: array containing column index in each row  of the laser stripe line 

row: index of the current row

01   INITIALISE Laser_Line=ARRAY[number of rows of image I ]; row=1;

02   LOOP FOR EACH row in the image I

03   FIND maximum intensity in the row

04   IF  maximum intensity  IS GREATER THAN  Threshold
05   FIND all columns equal maximum intensity

06   GROUP maximum intensity columns that is at least one column apart

07   SELECT the GROUP that has the highest number of elements and with number of elements less 

than Laser_Width

08   SET Laser_Line[row]=column index of centre element in the selected group

09   ELSE

10   SET Laser_Line[row]=0

11   ENDIF

12   SET row=row+1;

13   END LOOP

14   RETURN Laser_Line

Algorithm 2:

Junction Points labelling Algorithm (ROI, Threshold)

Parameter List:

ROI: the extracted ROI

Threshold: cut off intensity value for non-laser line regions

Junction_Points: binary array indicating if a row is a Junction point or not

row: index of the current row

01   INITIALISE Junction_Points=ARRAY [number of rows of ROI ]=0;  row=1;

02   LOOP FOR EACH row in the ROI
03   FIND maximum intensity in the row
04   IF maximum intensity > Threshold
05   SET Junction_Points [row]=1

06   END IF

07   SET row=row+1;

08   END LOOP

09   GROUP Junction_Points that are at least more than one row apart

10   SELECT the GROUP that certisfy the junction group selection criteria

11   SET Junction_Points [NOT Selected GROUPs]=0

12   RETURN Junction_Points
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