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3.1 INTRODUCTION
Accurate prediction of streamflow is very important in hydrology, hydraulic, and water resources en-
gineering as it can directly affect the dams operation and performance, groundwater recharge/exploita-
tion, sediment conveyance capability of river, watershed management, etc. There are many parameters
which affect the next day runoff e.g. precipitation, evaporation, groundwater level, soil antecedent
moisture content, etc. [8]. Although it would be possible to identify some sophisticated models taking
into account the hydrological and hydro-meteorological parameters, it would be preferable to have a
model to simulate the streamflow using previously recorded flow magnitudes [8]. So far, numerous
studies have reported streamflow prediction [4,18,1,9].

Nayak et al. [11] applied neuro-fuzzy models for forecasting streamflow. Also, Huang et al. [5],
Wang et al. [23], Jain and Kumar [6], and Kisi [8] employed neural networks (NN) for predicting
streamflows. Smith et al. [18] used a discrete wavelet transform for quantifying streamflow variabil-
ity. Coulibaly and Burn [2] used wavelet analysis for identifying variability in annual streamflows.
Solomatine and Xue [14] applied M5 model trees (M5Tree) and neural network techniques for flood
forecasting. Zhou et al. [24] developed a wavelet-based model for predicting monthly river flow. Kisi
[9] introduced the wavelet-ANN conjunction model for forecasting intermittent streamflow. Shiri and
Kisi [16] developed and tested a wavelet-neuro-fuzzy model for forecasting short-term and long-term
streamflow. Shiri et al. [17] compared different heuristic data driven approaches for predicting daily
streamflows. Shabri and Suhartono [15] applied least-square support vector regression (LSSVR) for
streamflow forecasting. Pandhiani and Shabri [12] applied wavelet-least-square support vector ma-
chines and wavelet regression models for monthly streamflow data. Kisi [10] applied LSSVR and
neuro-fuzzy embedded fuzzy c-means clustering for streamflow forecasting and estimation. Karimi
et al. [7] introduced a wavelet-genetic programming based model for predicting streamflows. To the
knowledge of the authors, there is no published work indicating the input–output mapping capability
of LSSVR, multivariate adaptive regression spline (MARS), or M5Tree methods in forecasting daily
streamflows.
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This paper is concerned with the implementation of three different heuristic methods, LSSVR,
MARS, and M5Tree, for forecasting daily streamflow.

3.2 METHODS
3.2.1 LEAST-SQUARE SUPPORT VECTOR REGRESSION
Any function f (x) in support vector regression (SVR) can be considered as [20]:

f (x) = wT ϕ(x) + b (3.1)

where wT and ϕ(x) denote the transposed output layer vector and the kernel function, respectively, and
b is the bias. Here, x stands for the model input which has a dimension of N ×n, where N and n show
the number of data patterns and number of input parameters, respectively. Using the minimization of
the following cost function, Vapnik et al. [22] calculate the w and b as follows:

Cost function = 1

2
wT + c

N∑
k=1

(
ξk − ξ∗

k

)
(3.2)

subject to the following constraints:
⎧⎪⎨
⎪⎩

yk − wT ϕ(xk) − b ≤ ε + ξk, k = 1,2,3, . . . ,N

wT ϕ(xk) + b − yk ≤ ε + ξ∗
k , k = 1,2,3, . . . ,N

ξk, ξ
∗
k ≥ 0, k = 1,2,3, . . . ,N

(3.3)

where xk , yk and ε denote the kth data input, kth data output, and fixed precision of the function
approximation, respectively. As well, ξk and ξ∗

k show slack variables, which should be used to deter-
mine the allowed error margin. From Eq. (3.2), c is considered the tuning parameter of the SVR for
minimizing the cost function. The Lagrangian theory might be applied:
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(3.4a)

N∑
k=1

(
ak − a∗

k

) = 0, ak, a
∗
k ∈ [0, c] (3.4b)

K(xk − xl) = ϕ(xk)
T ϕ(xl), k = 1,2, . . . ,N (3.4c)

where αk and α∗
k are Lagrangian multipliers. Consequently, the final form of the SVR is obtained as:

f (x) =
N∑

k,l=1

(
ak − a∗

k

)
K(x − xk) + b (3.5)
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SVR-based models are usually solved through searching solutions for quadratic programming issues
with linear inequality constraints. Suykens and Vandewalle [21] proposed a least-square modification
to the original SVR (which will be referred to as LSSVR) for improving the SVR-based models. In
LSSVR, solutions can be obtained through solving a set of linear equations. The cost function in
LSSVR is determined as:

Cost function = 1

2
wT w + 1

2
γ

N∑
k=1

e2
k (3.6)

which is subjected to the following constraint:

yk = wT ϕ(xk) + b + ek (3.7)

where γ and ek are tuning parameters in LSSVR method and the variable error, respectively. The
Lagrangian for this problem is written as:

L(w,b, e, a) = 1

2
wT w + 1

2
γ

N∑
k=1

e2
k −

N∑
k=1

ak

(
wT ϕ(xk) + b + ek − yk

)
(3.8)

where ak are Lagrangian multipliers. For solving the problem, the derivatives of Eq. (3.8) should be
equated to zero. Thus, the following equations are obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 ⇒ w =
N∑

k=1

akϕ(xk)

∂L
∂b

= 0 ⇒
N∑

k=1

ak = 0

∂L
∂ek

= 0 ⇒ ak = γ ek, k = 1,2, . . . ,N

∂L
∂ak

= 0 ⇒ wT ϕ(xk) + b + ek − yk = 0 k = 1,2, . . . ,N

(3.9)

where γ is a tuning parameter of LSSVR. From Eq. (3.9), it is seen that there are 2N +2 equations and
2N + 2 unknown parameters (ak , ek , w and b). Therefore, the parameters of LSSVR can be obtained
by solving the system of equations as presented in Eq. (3.9). In the present research, the radial basis
function (RBF) kernel was employed, which can be presented as:

K(x,xk) = exp
(−‖xk − x‖2/σ 2) (3.10)

where σ 2 is the other tuning parameter. So, there are two tuning parameters in LSSVR with RBF
kernel function, which can be obtained through minimizing deviation of the experimental data from
the simulated values. Normally, minimization of the mean square error (MSE) is considered as the
objective function to find the tuning parameters of LSSVR:

MSE =
∑n

i=1(Orep/predi
− Oexpi

)2

n
(3.11)
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Table 3.1 The Daily Statistical Parameters of Data Set for Karabuk-1314, Derecikviran-1335 stations

Stations Data Set xmean

(m3/s)

Sx

(m3/s)

Csx

(m3/s)
xmin

(m3/s)

xmax

(m3/s)

r1 r2 r3

Karabuk 1964–1975 27.96 35.44 3.00 2.73 436 0.932 0.846 0.785

1976–1986 27.67 37.38 3.68 1.69 474 0.928 0.832 0.771

1987–1997 22.17 31.28 3.69 0.9 413 0.946 0.863 0.799

1998–2008 21.53 34.78 5.21 0.07 595 0.940 0.843 0.762

Derecikviran 1964–1975 106.67 107.26 2.32 4.5 1340 0.933 0.844 0.785

1976–1986 101.00 121.79 4.57 0.1 1816 0.890 0.760 0.682

1987–1997 90.79 97.07 3.02 5 1373 0.931 0.836 0.764

1998–2008 93.14 122.63 5.23 6.5 2204 0.946 0.853 0.773

Table 3.2 Regularization Constant and Width of RBF Kernel Parameters of the Optimal LSSVR Models
for Each Combination of Karabuk and Derecikviran stations

Input combination
Cross Validation Training Data Set Test Data Set (i) (ii) (iii)
Karabuk
M1 1964–1986 1991–1999 (90, 30) (90, 40) (10, 90)

M2 1964–1975 and 1998–2008 1982–1990 (10, 90) (40, 90) (20, 50)

M3 1964–1975 and 1987–2008 1973–1981 (10, 20) (100, 100) (10, 90)

M4 1976–2008 1964–1972 (10, 60) (80, 10) (1, 1)
Derecikviran
M1 1964–1986 1991–1999 (10, 90) (10, 90) (10, 90)

M2 1964–1975 and 1998–2008 1982–1990 (10, 20) (90, 20) (90, 20)

M3 1964–1975 and 1987–2008 1973–1981 (40, 10) (10, 20) (50, 20)

M4 1976–2008 1964–1972 (10, 10) (10, 90) (1, 1)

where O shows the output, and subscripts rep/pred and exp denote, respectively, the represented/pre-
dicted and experimental values. Here, n stands for the number of data patterns.

3.2.2 MULTIVARIATE ADAPTIVE REGRESSION SPLINE
Multivariate adaptive regression splines (MARS) is a non-parametric regression technique which can
be considered as an extension of linear models that automatically models nonlinearities and interactions
between variables [3]. MARS considers models of the form:

	

f (x) =
k∑
i

ciBi(x) (3.12)

which is a weighted sum of function Bi(x); ci stands for the constant coefficients.
Each basis function Bi(x) can take one of the following three forms:
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FIGURE 3.1

The basins of Turkey and the Karabuk-1314 and Derecikviran-1335 stations in the western Black Sea Basin
(Basin No. 13).

1) a constant 1. There is just one such term, the intercept.
2) hinge function. A hinge function is of the form max(o, x − constant) or max(o, constant−x).

MARS selects the variables and their values for knots of the hinge functions automatically.
A product of two or more hinge functions: Interactions between two or more variables might be

simulated by these functions.

3.2.3 M5 MODEL TREE
M5 model tree is a decision tree learner for regression task which is used to predict values of numerical
response variable Y [13], which is a binary decision tree having linear regression functions at the
terminal (leaf) nodes, which can predict continuous numerical attributes. M5 model tree can simulate
the phenomena with very high dimensionality up to hundreds of attributes [13]. This ability sets M5
apart from regression tree learners at the time (like MARS), whose computational cost grows very
quickly when the number of features increases.
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FIGURE 3.2

Observed and estimated streamflows by the optimal LSSVR, MARS, and M5Tree models in Karabuk Station.

FIGURE 3.3

Observed and estimated streamflows by the optimal LSSVR, MARS, and M5Tree models in Derecikviran
Station.
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Table 3.3 Comparison of the LSSVR Models in Predicting Daily Streamflows of the Karabuk and Dere-
cikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 12.02 12.36 11.94 12.11

M2 1987–1997 9.69 8.76 8.51 8.99
M3 1976–1986 13.30 12.60 12.57 12.83
M4 1964–1975 12.17 11.26 10.94 11.46

Mean 11.80 11.25 10.99 11.34
MAE M1 1998–2008 3.29 3.26 2.95 3.17

M2 1987–1997 3.20 2.77 2.78 2.92
M3 1976–1986 4.33 3.99 4.00 4.11
M4 1964–1975 4.34 3.92 3.91 4.06

Mean 3.79 3.48 3.41 3.56

R2 M1 1998–2008 0.881 0.875 0.884 0.880
M2 1987–1997 0.881 0.875 0.884 0.880
M3 1976–1986 0.873 0.886 0.887 0.882
M4 1964–1975 0.883 0.900 0.905 0.896

Mean 0.880 0.884 0.890 0.885
Derecikviran
RMSE M1 1998–2008 41.34 41.34 38.35 40.34

M2 1987–1997 35.06 30.71 30.24 32.01
M3 1976–1986 56.64 51.51 49.68 52.61
M4 1964–1975 37.88 36.67 36.82 37.13

Mean 42.73 40.06 38.77 40.52
MAE M1 1998–2008 12.73 12.73 11.97 12.48

M2 1987–1997 12.41 11.19 11.01 11.54
M3 1976–1986 16.97 16.19 15.42 16.19
M4 1964–1975 16.34 15.92 14.99 15.75

Mean 14.61 14.01 13.35 13.99

R2 M1 1998–2008 0.890 0.890 0.906 0.896
M2 1987–1997 0.870 0.900 0.903 0.891
M3 1976–1986 0.791 0.821 0.834 0.815
M4 1964–1975 0.876 0.884 0.884 0.881

Mean 0.857 0.874 0.882 0.871

A model tree generation includes two different steps. The first step involves using a splitting cri-
terion to make a decision tree. The splitting criterion of M5 model tree algorithm is based on treating
the standard deviation of the class values which reach a node as an error measure at that node, and
calculating the expected reduction in this error as a result of testing each attribute at that node. By
splitting process, the data in child nodes get lower standard deviation values compared to the par-
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Table 3.4 Comparison of the MARS Models in Predicting Daily Streamflows of the Karabuk and Dere-
cikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 12.94 13.04 13.14 13.04

M2 1987–1997 10.38 9.54 9.06 9.66
M3 1976–1986 13.20 12.91 12.44 12.85
M4 1964–1975 12.38 11.87 11.77 12.01

Mean 12.22 11.84 11.60 11.89
MAE M1 1998–2008 3.36 3.06 3.07 3.16

M2 1987–1997 3.20 2.90 2.90 3.00
M3 1976–1986 4.29 4.04 4.04 4.12
M4 1964–1975 4.35 3.96 3.99 4.10

Mean 3.80 3.49 3.50 3.60

R2 M1 1998–2008 0.862 0.860 0.857 0.860
M2 1987–1997 0.891 0.908 0.916 0.905
M3 1976–1986 0.875 0.881 0.889 0.882
M4 1964–1975 0.879 0.889 0.891 0.886

Mean 0.877 0.885 0.888 0.883
Derecikviran
RMSE M1 1998–2008 45.61 42.47 40.98 43.02

M2 1987–1997 33.75 34.47 35.15 34.46
M3 1976–1986 53.31 52.37 52.25 52.64
M4 1964–1975 38.00 36.84 36.62 37.15

Mean 42.67 41.53 41.25 41.82
MAE M1 1998–2008 13.01 12.53 12.18 12.57

M2 1987–1997 12.05 11.35 11.63 11.68
M3 1976–1986 16.60 15.87 16.11 16.19
M4 1964–1975 16.51 15.33 15.52 15.79

Mean 14.54 13.77 13.86 14.06

R2 M1 1998–2008 0.862 0.882 0.893 0.879
M2 1987–1997 0.879 0.876 0.872 0.876
M3 1976–1986 0.809 0.817 0.818 0.814
M4 1964–1975 0.876 0.884 0.885 0.881

Mean 0.856 0.865 0.867 0.863

ent node. After evaluating all possible splits, M5 selects the split which maximizes the expected
error reduction. This division often produces a large tree-like structure that may cause overfitting.
Consequently, the tree must be pruned back. So, the second stage would involve pruning the over-
grown tree and replacing the subtrees with linear regression functions. This technique of generating
the model tree splits the parameter space into subspaces and builds a linear regression model in each
of them.
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Table 3.5 Comparison of the M5Tree Models in Predicting Daily Streamflows of the Karabuk and Dere-
cikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 13.53 13.83 14.40 13.92

M2 1987–1997 11.00 9.69 10.07 10.25
M3 1976–1986 13.52 14.97 15.65 14.71
M4 1964–1975 12.41 12.87 13.09 12.79

Mean 12.61 12.84 13.30 12.92
MAE M1 1998–2008 3.35 3.20 3.44 3.33

M2 1987–1997 3.22 3.06 3.28 3.19
M3 1976–1986 4.39 4.46 4.72 4.52
M4 1964–1975 4.35 4.25 4.47 4.36

Mean 3.83 3.74 3.98 3.85

R2 M1 1998–2008 0.849 0.842 0.829 0.840
M2 1987–1997 0.879 0.904 0.897 0.894
M3 1976–1986 0.869 0.840 0.826 0.845
M4 1964–1975 0.878 0.871 0.867 0.872

Mean 0.869 0.865 0.855 0.863
Derecikviran
RMSE M1 1998–2008 40.66 40.91 52.62 44.73

M2 1987–1997 34.51 38.33 38.76 37.20
M3 1976–1986 53.71 14.97 52.55 40.41
M4 1964–1975 38.08 37.86 37.92 37.95

Mean 41.74 33.02 45.46 40.07
MAE M1 1998–2008 12.70 12.24 13.47 12.80

M2 1987–1997 12.27 12.18 12.61 12.35
M3 1976–1986 16.82 4.46 16.31 12.53
M4 1964–1975 16.27 15.69 16.17 16.04

Mean 14.52 11.14 14.64 13.43

R2 M1 1998–2008 0.894 0.892 0.816 0.867
M2 1987–1997 0.874 0.852 0.848 0.858
M3 1976–1986 0.806 0.840 0.816 0.821
M4 1964–1975 0.875 0.877 0.878 0.876

Mean 0.862 0.865 0.839 0.856

3.3 APPLICATIONS AND RESULTS
The daily stream flow time series data obtained from two stations, Karabuk (Station No. 1314, Latitude
32°38′32′′, Longitude 41°10′11′′) and Derecikviran (Station No. 1335, Latitude 32°04′44′′, Longitude
41°32′49′′), operated by the Directorate General of Renewable Energy were used in the study (Fig. 3.1).
The stations (Station Nos. 1314 and 1335) have drainage areas of 5087 km2 and 13,300 km2 and gauge
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Table 3.6 Comparison of the P-LSSVR Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 11.72 11.27 11.83 11.61

M2 1987–1997 9.63 8.58 8.48 8.90
M3 1976–1986 13.24 12.41 12.50 12.72
M4 1964–1975 11.87 11.08 10.97 11.30

Mean 11.61 10.83 10.95 11.13
MAE M1 1998–2008 3.25 2.92 2.94 3.03

M2 1987–1997 3.11 2.79 2.80 2.90
M3 1976–1986 4.29 3.97 3.99 4.08
M4 1964–1975 4.38 3.91 3.93 4.07

Mean 3.76 3.40 3.42 3.52

R2 M1 1998–2008 0.887 0.896 0.886 0.890
M2 1987–1997 0.905 0.925 0.927 0.919
M3 1976–1986 0.875 0.890 0.888 0.884
M4 1964–1975 0.888 0.903 0.905 0.899

Mean 0.889 0.903 0.901 0.898
Derecikviran
RMSE M1 1998–2008 40.98 39.54 38.17 39.56

M2 1987–1997 33.96 29.93 29.91 31.27
M3 1976–1986 52.66 51.34 49.28 51.09
M4 1964–1975 37.50 36.38 34.82 36.23

Mean 41.27 39.30 38.04 39.54
MAE M1 1998–2008 12.66 12.12 11.92 12.23

M2 1987–1997 13.02 11.12 10.91 11.69
M3 1976–1986 16.95 16.03 15.25 16.08
M4 1964–1975 16.16 15.27 15.03 15.49

Mean 14.70 13.64 13.28 13.87

R2 M1 1998–2008 0.891 0.901 0.907 0.900
M2 1987–1997 0.878 0.905 0.905 0.896
M3 1976–1986 0.813 0.822 0.836 0.824
M4 1964–1975 0.878 0.887 0.896 0.887

Mean 0.865 0.879 0.886 0.877

data of 271 m and 2 m above the sea level, respectively. Cross validation method was used in the
applications and data were divided into four equal parts. For each application, three data sets were
used for training of the applied models while the remaining data set was used for testing.

The statistical parameters of the streamflow data of Karabuk and Derecikviran stations are reported
in Table 3.1. In the table, the xmean, Sx , Csx , xmin and xmax show the mean, standard deviation, skewness
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Table 3.7 Comparison of the P-MARS Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 12.97 13.09 13.14 13.06

M2 1987–1997 10.14 9.46 9.06 9.55
M3 1976–1986 13.17 12.68 12.44 12.76
M4 1964–1975 12.18 11.87 11.76 11.94

Mean 12.12 11.78 11.60 11.83
MAE M1 1998–2008 3.52 3.28 3.07 3.29

M2 1987–1997 3.35 3.11 2.90 3.12
M3 1976–1986 4.35 4.11 4.04 4.17
M4 1964–1975 4.35 3.96 4.06 4.12

Mean 3.89 3.62 3.52 3.68

R2 M1 1998–2008 0.862 0.859 0.857 0.859
M2 1987–1997 0.895 0.909 0.916 0.907
M3 1976–1986 0.876 0.885 0.889 0.883
M4 1964–1975 0.882 0.889 0.891 0.888

Mean 0.879 0.886 0.889 0.884
Derecikviran
RMSE M1 1998–2008 44.36 42.49 40.07 42.31

M2 1987–1997 34.27 34.37 35.76 34.80
M3 1976–1986 53.32 52.39 52.08 52.60
M4 1964–1975 37.84 36.87 36.62 37.11

Mean 42.45 41.53 41.13 41.70
MAE M1 1998–2008 13.76 13.37 12.77 13.30

M2 1987–1997 12.65 11.80 11.83 12.09
M3 1976–1986 16.86 16.32 16.35 16.51
M4 1964–1975 16.45 15.73 15.69 15.96

Mean 14.93 14.30 14.16 14.47

R2 M1 1998–2008 0.870 0.882 0.899 0.884
M2 1987–1997 0.876 0.876 0.868 0.873
M3 1976–1986 0.809 0.816 0.819 0.815
M4 1964–1975 0.877 0.884 0.885 0.882

Mean 0.858 0.865 0.868 0.863

coefficients, minimum and maximum, respectively. It is apparent from the table that the flow data show

a significantly high skewed distribution.

The ability of LSSVR, MARS, and M5Tree models was compared in forecasting daily streamflows.

Models were compared with each other with respect to root-mean-square error (RMSE), mean absolute
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FIGURE 3.4

Observed and estimated streamflows by the optimal P-LSSVR, P-MARS, and P-M5Tree models in Karabuk
station.

error, and determination coefficient (R2). The RMSE and MAE can be given as

RMSE =
√√√√1

n

n∑
i=1

(Qobserved,i − Qforecast,i )2 (3.13)

MAE = 1

n

n∑
i=1

|Qobserved,i − Qforecast,i | (3.14)

where Qobserved and Qforecast are the observed and forecasted streamflow values, n is the number of
data.

Different regularization constant and RBF kernel parameter values were tried for the LSSVR mod-
els. Three input combinations were tried as: (i) Qt , (ii) Qt , Qt−1, (iii) Qt , Qt−1, Qt−2. The optimal
control parameters of the LSSVR models are provided in Table 3.2 for Karabuk and Derecikviran sta-
tions. In the table, M1 indicates the first model calibrated using the data covering period of 1964–1986
and tested using the data between 1991 and 1999. Table 3.3 reports the test results of the LSSVR
models for the Karabuk and Derecikviran stations. Each model shows different accuracy and M2 gen-
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FIGURE 3.5

Observed and estimated streamflows by the optimal P-LSSVR, P-MARS, and P-M5Tree models in Derecikviran
station.

erally provides the best forecasting accuracy for the both stations. However, M3 is the worst model
with respect to RMSE and MAE criteria. Input combination (iii) including current and two previous
streamflow data generally give better accuracy than the other two input combinations. The RMSE of
the LSSVR ranges from 8.99 m3/s to 12.83 m3/s and from 32.01 m3/s to 52.61 m3/s for the Karabuk
and Derecikviran stations, respectively. Test RMSE, MAE, and R2 results of the MARS models are
shown in Table 3.4 for the Karabuk and Derecikviran stations. Similarly to the LSSVR, here also M2
provides the best forecasting accuracy. MARS model comprising input combination (iii) has a better
accuracy than the other two input combinations. However, there is a slight difference between input
combinations (ii) and (iii) for the both stations. The RMSE of the MARS ranges from 9.66 m3/s to
13.04 m3/s and from 34.46 m3/s to 52.64 m3/s for the Karabuk and Derecikviran stations, respectively.
Test results of the M5Tree models are given in Table 3.5 for the Karabuk and Derecikviran stations.
For this model, also M2 provides better accuracy than the other models. Differently from the LSSVR
and MARS models, the input combination (i) and the input combination (ii) give the best accuracy
in predicting daily streamflows of Karabuk and Derecikviran stations, respectively. The RMSE of the
M5Tree models ranges from 10.25 m3/s to 14.71 m3/s and from 37.20 m3/s to 44.73 m3/s for the
Karabuk and Derecikviran stations, respectively. Comparison of Tables 3.3–3.5 shows that the LSSVR
model outperforms the MARS and M5Tree models in predicting daily streamflows. For the M3 of
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Table 3.8 Comparison of the P-M5Tree Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 14.37 13.21 13.37 13.65

M2 1987–1997 10.59 9.70 10.01 10.10
M3 1976–1986 13.83 14.96 15.06 14.62
M4 1964–1975 12.72 13.37 12.97 13.02

Mean 12.88 12.81 12.85 12.85
MAE M1 1998–2008 3.52 3.31 3.44 3.42

M2 1987–1997 3.31 3.16 3.30 3.26
M3 1976–1986 4.56 4.76 4.75 4.69
M4 1964–1975 4.50 4.42 4.39 4.44

Mean 3.97 3.91 3.97 3.95

R2 M1 1998–2008 0.830 0.858 0.855 0.848
M2 1987–1997 0.889 0.905 0.901 0.898
M3 1976–1986 0.863 0.840 0.838 0.847
M4 1964–1975 0.872 0.862 0.869 0.868

Mean 0.864 0.866 0.866 0.865
Derecikviran
RMSE M1 1998–2008 58.32 61.16 63.14 60.87

M2 1987–1997 38.41 40.08 40.83 39.77
M3 1976–1986 65.43 65.30 66.97 65.90
M4 1964–1975 40.55 38.44 40.02 39.67

Mean 50.67 51.24 52.74 51.55
MAE M1 1998–2008 15.22 15.42 15.69 15.45

M2 1987–1997 12.56 12.75 13.20 12.84
M3 1976–1986 18.01 17.68 18.49 18.06
M4 1964–1975 16.94 16.52 16.86 16.77

Mean 15.68 15.59 16.06 15.78

R2 M1 1998–2008 0.774 0.753 0.747 0.758
M2 1987–1997 0.847 0.839 0.834 0.840
M3 1976–1986 0.713 0.716 0.702 0.710
M4 1964–1975 0.859 0.874 0.864 0.865

Mean 0.798 0.796 0.787 0.794

Derecikviran station, however, M5Tree model seems to be better than the other models (LSSVR and
MARS). Figs. 3.2 and 3.3 illustrate the observed and estimated streamflows by the optimal models for
Karabuk and Derecikviran stations, respectively. Less scattered estimates of the LSSVR model relative
to the other models are clearly seen from the figures for the both stations. The models seem to be more
successful in Karabuk than in the Derecikviran station. This may be due to the higher autocorrelations
of the Karabuk’s steamflow data (see Table 3.1).
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Table 3.9 Comparison of the Log-LSSVR Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 11.67 10.93 10.95 11.18

M2 1987–1997 9.84 9.11 9.08 9.34
M3 1976–1986 13.49 12.64 12.58 12.90
M4 1964–1975 11.82 11.13 10.44 11.13

Mean 11.71 10.95 10.76 11.14
MAE M1 1998–2008 3.29 2.99 2.95 3.07

M2 1987–1997 3.18 2.88 2.90 2.98
M3 1976–1986 4.42 4.00 4.05 4.16
M4 1964–1975 4.34 3.94 3.75 4.01

Mean 3.80 3.45 3.41 3.56

R2 M1 1998–2008 0.891 0.908 0.908 0.902
M2 1987–1997 0.903 0.917 0.919 0.913
M3 1976–1986 0.871 0.887 0.888 0.882
M4 1964–1975 0.890 0.902 0.915 0.903

Mean 0.889 0.904 0.907 0.900
Derecikviran
RMSE M1 1998–2008 40.02 40.94 41.36 40.78

M2 1987–1997 33.60 30.59 33.21 32.47
M3 1976–1986 53.28 51.05 49.10 51.14
M4 1964–1975 37.71 35.44 34.43 35.86

Mean 41.15 39.51 39.53 40.06
MAE M1 1998–2008 13.09 12.59 12.49 12.72

M2 1987–1997 12.43 11.10 11.39 11.64
M3 1976–1986 16.92 15.95 15.35 16.07
M4 1964–1975 16.48 15.18 14.53 15.40

Mean 14.73 13.70 13.44 13.96

R2 M1 1998–2008 0.898 0.906 0.904 0.903
M2 1987–1997 0.881 0.902 0.883 0.889
M3 1976–1986 0.810 0.826 0.840 0.825
M4 1964–1975 0.877 0.891 0.897 0.889

Mean 0.867 0.881 0.881 0.876

Kisi [10] investigated the effect of periodicity in forecasting monthly streamflows by adding month
number as input to the models (e.g., LSSVR) and he found that it significantly increased the models’
accuracy. Therefore, here, also the effect of periodicity was investigated by adding day number of each
streamflow data as input to the applied models. Test results of the periodic LSSVR (P-LSSVR) models
are provided in Table 3.6 for the Karabuk and Derecikviran stations, respectively. M2 model seems
to have the best accuracy in daily streamflow forecasting. The RMSE of the P-LSSVR ranges from
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Table 3.10 Comparison of the Log-MARS Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 12.88 14.81 12.62 13.44

M2 1987–1997 9.83 9.96 8.71 9.50
M3 1976–1986 13.51 13.20 13.47 13.39
M4 1964–1975 12.24 12.66 12.13 12.34

Mean 12.12 12.66 11.73 12.17
MAE M1 1998–2008 3.34 3.31 3.00 3.22

M2 1987–1997 3.16 3.01 2.85 3.01
M3 1976–1986 4.38 4.17 4.18 4.24
M4 1964–1975 4.36 4.14 4.08 4.19

Mean 3.81 3.66 3.53 3.67

R2 M1 1998–2008 0.871 0.831 0.874 0.859
M2 1987–1997 0.904 0.902 0.925 0.910
M3 1976–1986 0.872 0.876 0.872 0.873
M4 1964–1975 0.882 0.873 0.884 0.880

Mean 0.882 0.871 0.889 0.881
Derecikviran
RMSE M1 1998–2008 46.90 45.75 44.52 45.72

M2 1987–1997 34.45 33.40 33.04 33.63
M3 1976–1986 53.76 53.71 52.72 53.40
M4 1964–1975 37.67 36.81 36.29 36.92

Mean 43.19 42.42 41.64 42.42
MAE M1 1998–2008 13.83 12.89 12.77 13.16

M2 1987–1997 12.56 11.62 11.55 11.91
M3 1976–1986 17.03 16.34 16.18 16.52
M4 1964–1975 16.42 15.51 15.26 15.73

Mean 14.96 14.09 13.94 14.33

R2 M1 1998–2008 0.871 0.883 0.888 0.881
M2 1987–1997 0.874 0.882 0.885 0.880
M3 1976–1986 0.806 0.808 0.815 0.809
M4 1964–1975 0.877 0.883 0.886 0.882

Mean 0.857 0.864 0.868 0.863

8.90 m3/s to 12.72 m3/s and from 31.27 m3/s to 51.09 m3/s for the Karabuk and Derecikviran stations,
respectively. Table 3.7 gives the test accuracy of the periodic MARS (P-MARS) models in predicting
daily streamflows of Karabuk and Derecikviran stations. Similarly to the P-LSSVR, M2 model pro-
vides the best accuracy. The RMSE of the P-MARS ranges from 9.55 m3/s to 13.06 m3/s and from
34.80 m3/s to 52.60 m3/s for the Karabuk and Derecikviran stations, respectively. Test accuracy of the
periodic M5Tree (P-M5Tree) models is reported in Table 3.8 in respect of RMSE, MAE, and R2. The
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Table 3.11 Comparison of the Log-M5Tree Models in Predicting Daily Streamflows of the Karabuk and
Derecikviran Stations

Input Combinations
Statistics Cross Validation Test Data Set (i) (ii) (iii) Mean
Karabuk
RMSE M1 1998–2008 13.60 14.39 14.56 14.18

M2 1987–1997 10.94 9.44 9.73 10.04
M3 1976–1986 13.58 14.81 15.18 14.52
M4 1964–1975 12.36 12.85 12.38 12.53

Mean 12.62 12.87 12.96 12.82
MAE M1 1998–2008 3.44 3.31 3.39 3.38

M2 1987–1997 3.28 3.09 3.23 3.20
M3 1976–1986 4.44 4.43 4.55 4.47
M4 1964–1975 4.38 4.29 4.39 4.35

Mean 3.89 3.78 3.89 3.85

R2 M1 1998–2008 0.849 0.829 0.825 0.834
M2 1987–1997 0.878 0.909 0.903 0.897
M3 1976–1986 0.869 0.845 0.836 0.850
M4 1964–1975 0.879 0.869 0.879 0.876

Mean 0.869 0.863 0.861 0.864
Derecikviran
RMSE M1 1998–2008 41.58 46.82 59.42 49.27

M2 1987–1997 34.52 38.22 40.36 37.70
M3 1976–1986 53.54 54.81 54.20 54.18
M4 1964–1975 38.44 37.89 38.62 38.32

Mean 42.02 44.43 48.15 44.87
MAE M1 1998–2008 13.49 13.06 14.16 13.57

M2 1987–1997 12.60 12.21 12.85 12.55
M3 1976–1986 17.11 16.81 16.84 16.92
M4 1964–1975 16.80 16.02 16.32 16.38

Mean 15.00 14.52 15.04 14.86

R2 M1 1998–2008 0.895 0.865 0.767 0.842
M2 1987–1997 0.874 0.849 0.832 0.852
M3 1976–1986 0.809 0.799 0.804 0.804
M4 1964–1975 0.872 0.876 0.871 0.873

Mean 0.863 0.847 0.819 0.843

RMSE of the P-M5Tree ranges from 10.10 m3/s to 14.62 m3/s and from 39.67 m3/s to 65.90 m3/s
for the Karabuk and Derecikviran stations, respectively. Comparison of Tables 3.3–3.8 shows that
adding periodicity slightly increases the accuracy of LSSVR models in both stations while it signif-
icantly decreases M5Tree accuracy in predicting streamflows of Derecikviran station. As seen from
Tables 3.6–3.8, P-LSSVR outperforms the P-MARS and P-M5Tree models. Figs. 3.4–3.5 demonstrate
the observed and estimated streamflows by the optimal periodic models for the Karabuk and Dere-
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FIGURE 3.6

Observed and estimated streamflows by the optimal Log-LSSVR, Log-MARS, and Log-M5Tree models in
Karabuk station.

cikviran stations, respectively. Here also the P-LSSVR model has less scattered estimates than the
other models. Similarly to the previous application, the differences within each model are much bigger
in Derecikviran than the Karabuk station.

Sudheer et al. [19] used log transformation in streamflow forecasting and he found that the ANN
model built on the log-transformed series performed better. Therefore, here also the effect of log trans-
formation on models’ accuracy was investigated by using transformed data as inputs to the applied
models. Test results of the log-transformed LSSVR (Log-LSSVR) models are provided in Table 3.9
for the Karabuk and Derecikviran stations. Similarly to the previous applications, M2 model has the
best performance in daily streamflow forecasting while the M3 provides the worst accuracy. The RMSE
of the Log-LSSVR ranges from 9.34 m3/s to 12.90 m3/s and from 32.47 m3/s to 51.14 m3/s for the
Karabuk and Derecikviran stations, respectively. Test accuracy of the log-transformed MARS (Log-
MARS) models in predicting daily streamflows of Karabuk and Derecikviran stations is provided in
Table 3.10. Here also the M2 model gives the best accuracy. The RMSE of the Log-MARS ranges from
9.50 m3/s to 13.44 m3/s and from 33.63 m3/s to 53.40 m3/s for the Karabuk and Derecikviran stations,
respectively. Table 3.11 demonstrates the test accuracy of the log-transformed M5Tree (Log-M5Tree)
models. The RMSE of the P-M5Tree ranges from 10.04 m3/s to 14.52 m3/s and from 37.70 m3/s to
49.27 m3/s for the Karabuk and Derecikviran stations, respectively. Comparison of Tables 3.3–3.5 and
Tables 3.9–3.11 indicates that the log transformation of the streamflow data does not increase models’
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FIGURE 3.7

Observed and estimated streamflows by the optimal Log-LSSVR, Log-MARS, and Log-M5Tree models in
Derecikviran station.

accuracy in daily forecasting. Apparent from Tables 3.9–3.11 is that the Log-LSSVR outperforms the
Log-MARS and Log-M5Tree models in daily streamflow forecasting. The estimates of the optimal
models whose inputs are log-transformed streamflow data are visually compared in Figs. 3.6–3.7. The
Log-MARS model seems to be better than the other models in Karabuk station while the Log-LSSVR
model has the least scattered estimates in Derecikviran station.

3.4 CONCLUSION
The study compared the accuracy of three different heuristic methods, LSSVR, MARS, and M5Tree
models, in forecasting hydrological time series. Daily streamflow time series data from two stations
Karabuk and Derecikviran in Turkey were used. Cross validation method was used in the applications
by dividing data into four equal parts. Comparison results with respect to RMSE, MAE, and R2 in-
dicated that the LSSVR model generally outperformed the MARS and M5Tree models in forecasting
daily streamflows. The models were found to have better accuracy in Karabuk than in the Derecikvi-
ran station due to the higher autocorrelations of Karabuk streamflow data. The effects of periodicity
and log transformation were also examined in forecasting daily streamflows. Results showed that by
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adding periodicity component, a slight increment was found in accuracy of LSSVR models in both
stations while the M5Tree accuracy was decreased in forecasting streamflows of Derecikviran station.
Log transformation of the streamflow data did not increase the accuracy of the applied models in daily
forecasting. LSSVR model with periodicity and log-transformed data performed better than the corre-
sponding MARS and M5Tree models.
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