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Abstract

At the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-
relativistic energies. Many final-state particles are produced in each collision and their properties are
measured by the ALICE detector. The detector signals induced by the produced particles are digitized
leading to data rates that are in excess of 48 GB/s. The ALICE High Level Trigger (HLT) system
pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories
and reduce the data size in real time. The results of the reconstruction of the collision events, available
online, are used for high level data quality and detector-performance monitoring and real-time time-
dependent detector calibration. The online data compression techniques developed and used in the
ALICE HLT have more than quadrupled the amount of data that can be stored for offline event
processing.

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

81
2.

08
03

6v
2 

 [
ph

ys
ic

s.
in

s-
de

t]
  8

 N
ov

 2
01

9

http://creativecommons.org/licenses/by/4.0


The ALICE High Level Trigger ALICE Collaboration

Outline of this article

In the following, after introducing the ALICE (A Large Ion Collider Experiment) apparatus and high-
lighting specific detector subsystems relevant to this article, the ALICE High Level Trigger (HLT) archi-
tecture and the system software that operates the compute cluster are presented. Thereafter, the custom
Field Programmable Gate Array (FPGA) based readout card, which is employed to receive data from
the detectors, is described. An overview of the most important processing components employed in the
HLT follows. The updates made to the HLT for LHC Run 2, that provided the capability to operate at
twice the event rate compared to LHC Run 1, are discussed. The track and event reconstruction methods
used, along with the quality of their performance are highlighted. The presentation of the ALICE HLT
is concluded with an analysis of the maximum feasible data and event rates, along with an outlook in
particular to LHC Run 3.

1 The ALICE detector

Figure 1: The ALICE detector system at the LHC.

The ALICE apparatus [1] comprises various detector systems (Fig. 1), each with its own specific technol-
ogy choice and design, driven by the physics requirements and the experimental conditions at the LHC
[2]. The most stringent design constraint is the extreme charged particle multiplicity density (dNch/dη) in
heavy-ion collisions, which was measured at midrapidity to be 1943 ± 54 in the 5% most central (head-
on) Pb–Pb events at

√
sNN = 5.02 TeV [3]. The main part of the apparatus is housed in a solenoidal

magnet, which generates a field of 0.5 T within a volume of 1600 m3. The central barrel of ALICE is
composed of various detectors for tracking and particle identification at midrapidity. The main tracking
device is the Time Projection Chamber (TPC) [4]. In addition to tracking, it provides particle identifi-
cation information via the measurement of the specific ionization energy loss (dE/dx). The momentum
and angular resolution provided by the TPC is further enhanced by using the information from the six
layer high-precision silicon Inner Tracking System (ITS) [5], which surrounds the beam pipe. Outside
the TPC there are two large particle identification detectors: the Transition Radiation Detector (TRD)
[6] and the Time-Of-Flight (TOF) [7]. The central barrel of ALICE is augmented by dedicated detectors
that are used to measure the energy of photons and electrons, the Photon Spectrometer (PHOS) [8] and
ElectroMagnetic Calorimeter (EMCal) [9]. In the forward direction of one of the particle beams is the
muon spectrometer [10], with its own large dipole magnet. In addition, there are other fast-interaction
detectors including the V0, T0 [11], and Zero Degree Calorimeter (ZDC) [12]. As the TPC is the most
relevant for the performance of the HLT a more detailed description of it follows.

The TPC is a large cylindrical, gas-filled drift detector with two readout planes at its end-caps. A central
high voltage membrane provides the electric drift field and divides the total active volume of 85 m3 into
two halves. Each charged particle traversing the gas in the detector volume produces a trace of ionization
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along its own trajectory. The ionization electrons drift towards the readout planes, which are subdivided
into 18 trapezoidal readout sectors. The readout sectors are segmented into 15488 readout pads each,
arranged in 159 consecutive rows in radial direction. Upon their arrival at the readout planes, ionization
electrons induce electric signals on the readout pads. For an issued readout trigger, the signals are
digitized by a 10 bit ADC at a frequency of 10 MHz, sampling the maximum drift time of about 100 µs
into 1000 time bins. This results in a total of 5.5 · 108 ADC samples containing the full digitized TPC
pulse height information. The size of data corresponding to a single collision event is about 700 MB.
A zero-suppression algorithm implemented in an ASIC reduces the proton-proton TPC event size to
typically 100 kB. The exact event size depends on the background, trigger setting, and interaction rate.
Central Pb–Pb collisions produce up to 100 MB of TPC data, which can grow up to around 200 MB with
pile-up. The TPC is responsible for the bulk of the data rate in ALICE. In Run 2, when operated at event
rates of up to 2 kHz (pp and p–Pb) and 1 kHz (Pb–Pb), it reads out up to 40 GB/s. In addition, the total
readout rate has a contributixon of a few GB/s from other ALICE detectors, some of them operating at
trigger rates up to 3.5 kHz. The volume of data taken at these rates exceeds the capacity for permanent
storage considerably.

The amount of data that is stored can be reduced in a number of ways. The most widely used methods
are compression of raw data (using either lossless or lossy schemes) and online selection of a subset
of physically interesting events (triggering), which discards a certain fraction of the data read out by
the detector [13–15]. A hierarchical trigger system performs this type of selection by having the lower
hardware levels base their decision only on a subset of the data recorded by trigger detectors. The highest
trigger level is the software-based High Level Trigger (HLT), which has access to the entire detector data
set.

2 The High Level Trigger (HLT)

2.1 From LHC Run 1 commissioning to LHC Run 2 upgrades

A first step in transforming raw data to fully reconstructed physics information in real time was achieved
with the beginning of LHC Run 1 on November 23rd, 2009, when protons collided in the center of the
ALICE detector for the first time. On the morning of December 6th, stable beams at an energy of 450 GeV
per beam were delivered by the LHC for the first time, and the HLT reconstructed the first charged-
particle tracks from pp collisions by processing data from all available ALICE detectors. Though the
HLT was designed as trigger and was operated as such at the start of Run 1, the collaboration found that
by using it for data compression one could record all data to storage, thus optimizing the use of beam
time. This was possible due to the the quality of the online reconstruction and the increased bandwidth
to storage. Throughout Run 1 the HLT was successful as an online reconstruction and data compression
facility.

After the LHC Run 1, that lasted to the beginning of 2013, parts of the ALICE detector were upgraded
for LHC Run 2, which started in 2015. The most important change was the upgrade of the TPC readout
electronics, employing a new version of the Readout Control Unit (RCU2) [16] which uses the updated
optical link speed of 3.125 Gbps instead of the previous readout rate of 2.125 Gbps. The upgrades,
along with an improved TPC readout scheme, doubled the theoretical maximum TPC readout data rate
to 48 GB/s, thus allowing ALICE to record twice as many events. In addition, the HLT farm underwent
a consolidation phase during that period in order to be able to cope with the increased data rate of Run 2.
This update improved several parts of the HLT based on the experience from Run 1. While the HLT
processed up to 13 GB/s of TPC data in Run 1 [17], the new HLT infrastructure allows for the processing
of the full 48 GB/s (see Section 4). Figure 2 shows a screenshot of the online event display during a Run 2
heavy-ion run1 with active GPU-accelerated online tracking in the HLT, of which will be described in

1A run is defined as a limited period of data taking with similar detector and data-taking conditions.

3



The ALICE High Level Trigger ALICE Collaboration

Figure 2: Visualization of a heavy-ion collision recorded in ALICE with tracks reconstructed in real time on the
GPUs of the HLT.

the following.

2.2 General description

The main objective of the ALICE HLT is to reduce the data volume that is stored permanently to a
reasonable size, so to fit in the allocated tape space. The baseline for the entire HLT operation is full
real-time event reconstruction. This is required for more elaborate compression algorithms that use re-
constructed event properties. In addition, the HLT enables a direct high-level online Quality Assurance
(QA) of the data received from the detectors, which can immediately reveal problems that arise during
data taking. Several of the ALICE sub-detectors (like the TPC) are so called drift-detectors that are
sensitive to environmental conditions like ambient temperature and pressure. Thus a precise event recon-
struction requires detector calibration, which in turn requires results from a first reconstruction as input.
It is natural then to perform as much calibration as possible online in the HLT, which is also immediately
available for offline event reconstruction, and thus reduces the required offline compute resources. In
summary, the HLT tasks are online reconstruction, calibration, quality monitoring and data compression.

The HLT is a compute farm composed of 180 worker nodes and 8 infrastructure nodes. It receives
an exact copy of all the data from the detector links. After processing the data, the HLT sends its
reconstruction output to the Data Acquisition (DAQ) via dedicated optical output links. Output channels
to other systems for QA histograms, calibration objects, etc., are described later in this paper. In addition
the HLT sends a trigger decision. The decision contains a readout list, which specifies the output links
that are to be stored and are to be discarded by DAQ. A collision event is fully accepted if all detector
links are allowed to store data and rejected if the decision is negative for all links. Data on some links may
be replaced by issuing a negative decision for those links and injecting (reconstructed) HLT data instead.
DAQ buffers all the event fragments locally and waits for the readout decision from the HLT, which has
an average delay of 2–4 seconds for Pb–Pb data, while in rare cases the maximum delay reaches 10
seconds. Then, DAQ builds the events using only the fraction of the links accepted by the HLT plus the
HLT payloads and moves the events first to temporary storage and later to permanent storage. Figure 3
illustrates how the HLT is integrated in the ALICE data readout scheme.

The compute nodes use off-the-shelf components except for the Read Out Receiver Card (RORC - out-
lined in Section 2.3), which is a custom FPGA-based card developed for Run 1 and Run 2. During
LHC Run 1 the HLT farm consisted of 248 servers including 117 dedicated Front-End Processor (FEP)
nodes equipped with RORCs for receiving data from the detectors and sending data to DAQ. The re-
maining servers were standard compute nodes with two processors each, employing AMD Magny-Cours
twelve-core CPUs and Intel Nehalem Quad-core CPUs. A subset of 64 compute nodes was equipped
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Figure 3: The ALICE HLT in the data readout scheme during Run 2. In the DAQ system the data flow through
the local and the global data concentrators, LDC and GDC, respectively. In parallel, HLT ships QA and calibration
data via dedicated interfaces.

with NVIDIA Fermi GPUs as hardware accelerators for track reconstruction, described in Section 3.3.
In addition, there were around 20 infrastructure nodes for provisioning, storage, database service and
monitoring. Two independent networks connected the cluster: a gigabit Ethernet network for manage-
ment and a fast fat-tree InfiniBand QDR 40 GBit network for data processing. Remote management of
the compute nodes was realized via the custom developed FPGA-based CHARM card [18] that emulates
and forwards a VGA interface, as well as the BMC (Board Management Controller) iKVM (Keyboard,
Video, Mouse over IP) available as IPMI (Intelligent Platform Management Interface) standard in new
compute nodes [19].

In 2014, a new HLT cluster was installed for Run 2 replacing the older servers, in particular the Run 1
FEP nodes, which were operational since 2008, during system commissioning. The availability of mod-
ern hardware, specifically the faster PCI Express interface and network interconnect, allowed for a con-
solidation of the different server types. The Run 2 HLT employs 188 ASUS ESC4000 G2S servers with
two twelve-core Intel Xeon IvyBridge E5-2697 CPUs running at 2.7 GHz and one AMD S9000 GPU
each. In order to exclude possible compatibility problems before purchase, a full HLT processing chain
was stress tested on the SANAM [20] compute cluster at the GSI Helmholtz Centre for Heavy-Ion Re-
search using almost identical hardware. The front-end and output functionality was integrated into 66
input nodes and 8 output nodes, where the input nodes serve also as compute nodes. They were equipped
with RORCs for input and output allowing for a better overall resource utilization of the processors, while
the infrastructure nodes of the same server type were kept separate. This reduction in the total number of
servers also reduced the required rack-space and number of network switches and cables. Furthermore,
the fast network was upgraded to 56 GBit FDR InfiniBand. Table 1 gives an overview of the Run 1 and
Run 2 computing farms.

Considering the requirement of high reliability, which is driven among other things by the operating
cost of the LHC, a fundamental design criterion is the robustness of the overall system with regard to
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Table 1: Overview of the HLT Run 1 and Run 2 production clusters.

Run 1 farm Run 2 farm
CPU cores Opteron / Xeon Xeon E5-2697

2784 cores, up to 2.27 GHz 4480 cores, 2.7 GHz
GPUs 64 × GeForce GTX480 180 × FirePro S9000
Total memory 6.1 TB 23.1 TB
Total nodes 248 188
Infrastructure nodes 22 8
Worker nodes 226 180
Compute nodes (CN) 95 172
Input nodes 117 (subset of CNs) 66
Output nodes 14 8
Bandwidth to DAQ 5 GB/s 12 GB/s
Max. input bandwidth 25 GB/s 48 GB/s
Detector links 452 473
Output links 28 28
RORC type H-RORC C-RORC
Host interface PCI-X PCI-Express
Max. PCI bandwidth 940 MB/s 3.6 GB/s
Optical links 2 12
Max. link bandwidth 2.125 Gbps 5.3125 Gbps
Clock frequency 133.3 MHz 312.5 MHz
On-board memory 128 MB up to 16 GB

component failure. Therefore, all the infrastructure nodes are duplicated in a cold-failover configuration.
The workload is distributed in a round-robin fashion among all compute nodes, so that if one pure
compute node fails it can easily be excluded from the data-taking period. Potentially the failover requires
a reboot and a restart of the ALICE data taking. This scenario only takes a few minutes, which is
acceptable given the low failure rate of the system; for instance, there were only 9 node failures in 1409
hours of operation during 2016. A more severe problem would be the failure of an input node, because
in that case the HLT is unable to receive data from several optical links. Even though there are spare
servers and spare RORCs, manual intervention is needed to reconnect the fibers if the FEP node cannot
be switched on remotely. However, this scenario occurred only twice in all the years of HLT operation
(from 2009 to 2017). Since the start of Run 2, the entire production cluster is connected to an online
uninterruptible power supply.

Since the installation of the Run 2 compute farm, parts of the former compute infrastructure are reused
as a development cluster, to allow for software development and realistic scale testing without disrupting
the data taking activities. Additionally, the development cluster is used as an opportunistic GRID com-
pute resource (see Section 2.5) and an integration cluster for the ALICE Online-Offline (O2) computing
upgrade foreseen for Run 3 [21]. The O2 project includes upgrades to the ALICE computing model, a
software framework that integrates the online and offline data processing, and the construction of a new
computing facility.

2.3 The Common Read-Out Receiver Card

The Read-Out Receiver Card (RORC) is the main input and output interface of the HLT for detector
data. It is an FPGA-based server plug-in board that connects the optical detector links to the HLT cluster
and serves as the first data processing stage. During Run 1 this functionality was provided by the HLT-
dedicated RORC (H-RORC) [22], a PCI-X based FPGA board that connects to up to two optical detector
links at 2.125 Gbps. The need for higher link rates, the lack of the PCI-X interface on recent server PCs,
as well as the limited processing capabilities of the H-RORC with respect to the Run 2 data rates required
a new RORC for Run 2. None of the commercially available boards were able to provide the required
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functionality, which led to the development of the Common Read-Out Receiver Card (C-RORC) as a
custom readout board for Run 2. The hardware was developed in order to enable the readout of detec-
tors at higher link speeds, extend the hardware-based online processing of detector data, and provide
state-of-the-art interfaces with a common hardware platform. Additionally, technological advancements
enabled a factor six higher link density per board and therefore reduced the number of boards required
for the same amount of optical links compared to the previous generation of RORCs. One HLT C-RORC
receives up to 12 links. A photograph of the board is shown in Fig. 4. The C-RORC has been part of
the production systems of ALICE DAQ, ALICE HLT and ATLAS trigger and data acquisition since the
start of Run 2 [23]. The FPGA handles the data stream from the links and directly writes the data into
the RAM of the host machine using Direct Memory Access (DMA). A minimal kernel adapter in com-
bination with a user space device driver based on the Portable Driver Architecture (PDA) [24] provides
buffer management, flow control, and user-space access to the data on the host side. A custom DMA
engine in the firmware enables a throughput of 3.6 GB/s from device to host. This is enough to handle
the maximum input bandwidth of the TPC as the biggest data contributor (1.9 GB/s per C-RORC), the
TRD as the detector with the fastest link speed (6 links at 2.3 GB/s per C-RORC), and a fully equipped
C-RORC with 12 links at 2.125 Gbps (2.5 GB/s). The C-RORC FPGA implements a cluster finding al-
gorithm to process the TPC raw data at an early stage. This algorithm is further described in Section 3.2.
The C-RORC can be equipped with several GB of on-board memory, used for data replay purposes.
Generated, simulated, previously recorded, or even faulty detector data can be loaded into this on-board
RAM and played back as if it were coming via the optical links. The HLT output FPGAs can be config-
ured in a way to discard data right before it would be sent back to the DAQ system. The data replay can
be operated independently from any other ALICE online system, detector, or LHC operational state. In
combination with a configurable replay event rate, the data replay functionality provides a powerful tool
to verify, scale, and benchmark the full HLT system. This feature is essential for the optimizations pre-
sented in Section 4. The C-RORCs are integrated into the HLT data transport framework as data-source
components for detector data input via optical links and as sink components to provide the HLT results
to the DAQ system. The C-RORC FPGA firmware and its integration into the HLT is further described
in [25]. The data from approximately 500 links, at link rates between 2.125 Gbps and 5.3125 Gbps, is
handled via 74 C-RORCs that are installed in the HLT.

12 Optical Links
using 3 QSFPs,
connected to FPGA
transceivers (GTX).
Up to 6.6 Gbps per
channel

PCIe Gen2, 8 Lanes
8x 5.0 Gbps, connected to
Xilinx PCIe Hard Block

2x DDR3 SO-DIMM
Two independent SO-DIMMs
up to 1066 Mbps with Xilinx
MIG DDR3 softcore

Xilinx Virtex-6 FPGA
FF1156 package
LX240T

Figure 4: The Common Read-Out Receiver Card.

2.4 Cluster commissioning, software deployment, and monitoring

The central goal for managing the HLT cluster is automation that minimizes the need for manual inter-
ventions and guarantees that the whole cluster is in a consistent state that can be easily controlled and
modified if needed. Foreman [26] is used to automatize the basic installation of the servers via PXE-boot.
The operating system (OS) that is currently used on all of the servers is CERN CentOS 7. Once the OS
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is installed on these servers, Puppet [27] controls and applies the desired configuration to each server.
Puppet efficiently integrates into Foreman and allows for servers to be organized into groups according
to different roles and apply changes to multiple servers instantaneously. With this automatized setup the
complete cluster can be rebuilt, including the final configuration, in roughly three hours. For both the
production and development clusters several infrastructure servers are in place, providing different ser-
vices like DNS, DHCP, NFS, databases, or private network monitoring. Critical services are redundant
to reduce the risk of cluster failure in case there is a problem with a single infrastructure server.

The monitoring of the HLT computing infrastructure is done using the open source tool Zabbix [28]. It
allows administrators to gather metrics, be aware of the nodes health status, and react to undesired states.
More than 100 metrics per node are being monitored, such as temperature, CPU load, network traffic,
free disk space, disk-health status, and failure rate on the network fabric. The monitoring system autom-
atizes many tasks that would require administrators’ intervention. These preemptive measures offer the
possibility to replace hardware beforehand, i. e. during technical shutdowns, and to avoid failures during
data taking. HLT administrators receive a daily report of the system status and, in addition, e-mail noti-
fications when certain metrics exceed warning thresholds. For risky events there are automated actions
in place. For instance, several shutdown procedures are performed when the node temperature reaches
critical values, in order to prevent damage to the servers.

In addition to Zabbix, ALICE has developed a custom distributed log collector called InfoLogger. A
parser script is employed that scans all error messages stored to the logs to find important problems in
real time. These alerts can also help the detector experts with the monitoring of their systems, including
automated alarms sent via e-mail or SMS.

This configuration lowers the complexity of managing a heterogeneous system with around 200 nodes
for a period of at least 10 years, reducing the number of trained on-site engineers required for operation.

2.5 Alternative use cases of the HLT farm

In order to maximize the usage of the servers during times when there are no collisions, a Worldwide
LHC Computing Grid (WLCG) [29] configuration was developed for the cluster in cooperation with the
ALICE offline team. The first WLCG setup used OpenStack [30] Virtual Machines (VM) to produce
ALICE Monte Carlo (MC) simulations of particle collision events. In 2017, the WLCG setup was im-
proved to use Docker [31] containers instead of OpenStack VMs, which allows for more flexibility and
therefore improves efficiency with the available resources. The containers are spawned for just one job
and destroyed after the job finishes. During pp data taking a part of the production cluster is contributed
to the WLCG setup. During phases without data taking, like LHC year-end shutdowns and technical
stops, the whole HLT production cluster is operated as a WLCG site as long as it is not needed for tests
of the HLT system. Figure 5 shows the aggregated wall time of the new Docker setup from March 2017
onward. The steeper slope represents periods when the complete cluster is assigned to WLCG operation,
while the plateau indicates a phase of full scale framework testing. The HLT production cluster provides
a contribution to the ALICE MC simulation compute time with this opportunistic use on a best-effort
basis. The WLCG setup of the HLT focuses on MC simulations because these require less storage and
network resources than general ALICE Grid jobs and are thus ideally suited for opportunistic operation
without side effects.

The HLT development cluster, introduced in Section 2.2, is composed of approximately 80 older servers.
Not only does it allow for ongoing development of the current framework, of which runs on the produc-
tion cluster, but it can also used for tests of the future framework for Run 3. During periods when no
development is taking place, 60 of the nodes act as second WLCG site, in addition to the opportunistic
use of the production cluster, donating the compute resources to ALICE MC jobs. To guarantee that
there is no interference with data taking, the HLT development cluster is completely separated from the
production environment. The development cluster is installed in different racks and also uses a different
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Figure 5: Contribution of the HLT production (dotted line) and development (double-dotted dashed line) clusters
to the WLCG between March 2017 and January 2018, with the sum of both contributions shown as the solid line.

private network, which has no direct connection to the production cluster. For WLCG operation, the
HLT internal networks and the network used for WLCG communication were completely separated via
VLANs configured at switch level.

2.6 HLT architecture and data transport software framework

In order to transform the raw detector signals into physical properties all ALICE detectors have de-
veloped reconstruction software, like TPC cluster finding (Section 3.2) and track finding (Section 3.3)
algorithms. In the HLT the data processing is arranged in a pipelined data-push architecture. The re-
construction process starts with local clusterization of the digitized data, continues with track finding
for individual detectors, and ends with the creation of the Event Summary Data (ESD). The ESD is a
complex ROOT [32] data structure that holds all of the reconstruction information for each event.

In addition to the core framework described in the this section, a variety of interfaces exist to other
ALICE subsystems [33]. These include the command and control interface to the Experiment Control
System (ECS), the Shuttle system used for storing calibration objects for offline use, the optical links
to DAQ, the online event display, and Data Quality Monitoring (DQM) for online visualization of QA
histograms.

The ALICE HLT uses a modular software framework consisting of separate components, which com-
municate via a standardized publisher-subscriber interface designed to cause minimal overhead for data
transport [34, 35]. Such components can be data sources that feed into the HLT processing chain, either
from the detector link or from other sources like TPC temperature and pressure sensors. Data sinks ex-
tract data from the processing chain and send the reconstructed event and trigger decision to DAQ via the
output links. Other sinks ship calibration objects or QA histograms, which are stored or visualized. In
addition to source and sink components, analysis or worker components perform the main computational
tasks in such a processing chain and are arranged in a pipelined hierarchy. Figure 6 gives an overview of
the data flow of the most relevant components currently running in the HLT. A component reads a data
set (if it is not a source), processes it, creates the output and proceeds to the next data set. Although each
component processes only one event at a time, the framework pipelines the events such that thousands of
events can be either in-chain in the cluster or also on a single server. Merging of event fragments, scatter-
ing of events among multiple compute nodes for load balancing, and network transfer are all handled via
special processing components provided by the framework and are transparent to the worker processes.
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Figure 6: Schema of the HLT components. The colored boxes represent processes accelerated by GPU/FPGA
(green), normal processes (blue), processes that produced HLT output that is stored (dark blue), entities that store
data (purple), asynchronous failure-resilient processes (dark red), classical QA components that use the original
HLT data flow (brown), input (orange), and sensor data (red). Incoming data are passed through by the C-RORC
FPGA cards or processed internally. The input nodes locally merge data from all links belonging to one event.
The compute nodes then merge all fragments belonging to one event and run the reconstruction. The bottom of the
diagram shows the asynchronous online calibration chain with a feedback loop as described in Section 3.4.

Components situated on the same compute node pass data via a shared-memory based zero-copy scheme.
With respect to Run 1 the framework underwent a revision of the interprocess-scheduling approach. The
old approach, using POSIX pipes, began to cause a significant CPU load through many system calls and
was consequently replaced by a shared-memory based communication.

Presently, the user simply defines the processing chain with reconstruction, monitoring, calibration, and
other processing components. The user also defines the inputs for all components as well as the output
at the end of the processing chain. The full chain is started automatically and distributed in the cluster.
The processing configuration can be annotated with hints to guide the scheduling. In order to minimize
the data transfer, the chain usually starts with local processing components on the front-end nodes (like
the TPC cluster finder presented in Section 3.2). In the end, after the local steps have reduced the data
volume, all required event fragments are merged on one compute node for the global event reconstruction.

The data transport framework is based on three pillars. There is a primary reconstruction chain which
processes all the recorded events in an event-synchronous fashion. It performs the main reconstruction
and data compression tasks and is responsible for receiving and sending data. This main chain is the
backbone of the HLT event reconstruction and its stability is paramount for the data taking efficiency of
ALICE.

The second pillar is the data monitoring side chains, which run in parallel at low rates on the compute
nodes. These subscribe transiently to the output of a component of the main chain. In this way, the side
chains cannot break or stall the HLT main chain.

For Run 2 a third pillar was added, based on Zero-MQ (Zero Message Queue) message transfer [36],
which provides similar features compared to the main chain but runs asynchronously. Currently, it is
used for the monitoring and calibration tasks and does not merge fragments of one event but instead it
is fed with fully reconstructed events from the main chain. It processes as many events as possible on
a best-effort basis, skipping events when necessary. Results of the distributed components are merged
periodically to combine statistics processed by each instance. The same Zero-MQ transport is also used
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as an interface to DQM and as external interface which allows detector experts to query merged results
of QA components running in the HLT.

The transport framework is not restricted to closed networks or computing clusters. A proof-of-principle
test of the framework used locally in the HLT cluster deploys a global processing chain for a Grid-like
real-time data processing. This framework was distributed on a North-South axis between Cape Town
in South Africa and Tromsø in northern Norway, with Bergen (Norway), Heidelberg (Germany), and
Dubna (Russia) as additional participating sites [37]. The concepts developed for the HLT are the basis
for the new framework of the ALICE O2 computing upgrade.

2.7 Fault tolerance and dynamic reconfiguration

Robustness of the main reconstruction chain is the most important aspect from the point of view of data
taking efficiency. Therefore, the HLT was designed with several failure resiliency features. All infras-
tructure services run on two redundant servers and compute node failures can be easily compensated
for. Experimental and non-critical components can run in a side-chain or asynchronously via Zero-MQ,
separate from the main chain.

Also the main chain itself has several fault tolerance features. Some components use code from offline
reconstruction, or code written by the teams responsible for certain detector development, and hence they
are not developed considering the high-reliability requirements of the HLT. Nevertheless, the HLT must
still ensure stable operation in case of critical errors like segmentation faults. Thus, all components run in
different processes, which are isolated from each other by the operating system. In case one component
fails, the HLT framework can transparently cease the processing of that component for a short time,
and then later restart the component. Although the event is still processed, the result of that particular
component for this event and possibly several following events are lost. This loss of a single instance
causes only a marginal loss of information.

3 Fast algorithms for fast computers

Since the TPC produces 91.1% (Pb–Pb) and 95.3% (pp) of the data volume2 and, also because of the
sheer data volume, event reconstruction of the TPC data including clusterizing and tracking is the most
compute intensive task of the HLT. This makes the TPC the central detector for the HLT. Its raw data are
the most worthwhile target for data compression algorithms. Since a majority of the compute cycles are
spent processing TPC data, it is mandatory that the TPC reconstruction code is highly efficient. It is the
TPC reconstruction that leverages the compute potential of both the FPGA and GPU hardware accelera-
tors in the HLT. Furthermore, since it is an ionization detector, TPC calibration is both challenging and
essential.

Here, a selection of important HLT components, following the processing of the TPC data in the chain is
described. The processing of the TPC data starts with the clusterization of the raw data, which happens in
a streaming fashion in the FPGA while the data are received at the full optical speed. Two independent
branches follow, where one component compresses the TPC clusters and replaces the TPC raw data
with compressed HLT data. The second branch starts with the TPC track reconstruction using GPUs,
continues with the creation of the ESD, and runs the TPC calibration and QA components.

3.1 Driving forces of information science

The design of the ALICE detector dates back two decades. At that time, the LHC computing needs
could not be fulfilled based on existing technology but relied on extrapolations according to Moore’s
Law [38]. Indeed the performance of computers has improved by more than three orders of magnitude

2Values from the 8 kHz Pb–Pb and 200 kHz pp data taking runs of 2015
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since then, but the development of microelectronics has reached physical limits in recent years. For
example, processor clock rates have not increased significantly since 2004. To increase computing power
various levels of parallelization are implemented, such as the use of multi- or many-core processors, or by
supporting SIMD (Single Instruction, Multiple Data) vector-instructions. At this point in time computers
do not become faster for single threads but they can become more powerful if parallelism is exploited.
Although these developments were only partially foreseeable at the beginning of the ALICE construction
phase, they have been taken into account for the realization of the HLT.

3.2 Fast FPGA cluster finder for the TPC

Figure 7: Schematic representation of the geometry of a TPC sector. Local y and z coordinates of a charged-
particle trajectory are measured at certain x positions of 159 readout rows, providing a chain of spatial points (hits)
along its trajectory.

At the beginning of the reconstruction process the so-called clusters of locally adjacent signals in the
TPC have to be found. Figure 7 shows a schematic representation of a cross-section of a trapezoidal TPC
sector, where the local coordinate system is such that in the middle of the sector the x-axis points away
from the interaction point. One can imagine a stack of 2D pad-time planes (y-z plane in Fig. 7) in which
a charged particle traversing the detector creates several neighboring signals in each 2D plane. The exact
position of the intersection between the charged-particle trajectory and the 2D plane can be calculated by
using the weighted mean of the signals in the plane, i. e. by determining their center of gravity. The HLT
cluster-finder algorithm can be broken down into three separate steps. Firstly, the relevant signals have to
be extracted from raw data and the calibration factors are applied. Next, neighboring signals and charge
peaks in time-direction are identified and the center of gravity is calculated. Finally, neighboring signals
in the TPC pad-row direction (x-y plane) are merged to form a cluster. These reconstructed clusters are
then passed on to the subsequent reconstruction steps, such as the track finding described in Section 3.3.

By design, the TPC cluster-finder algorithm is ideally suited for the implementation inside an FPGA [39],
which supports small, independent and fast local memories and massively parallel computing elements.
The three processing steps are mutually independent and are correspondingly implemented as a pipeline,
using fast local memories as de-randomizing interfaces between these stages. In order to achieve the nec-
essary pipeline throughput, each pipeline stage implements multiple custom designed arithmetic cores.
The FPGA based RORCs are required as an interface of the HLT farm to the optical links. By placing the
online processing of the TPC data in the FPGA, the data can be processed on-the-fly. The hardware clus-
ter finder is designed to handle the data bandwidth of the optical link. Finally, a compute node receives
the TPC clusters, computed in the FPGA, directly into its main memory.

12



The ALICE High Level Trigger ALICE Collaboration

An offline reference implementation of the cluster finding exists but is far too slow to be implemented
online. Rather, the offline cluster finder is used as a reference for both the physics performance and
the processing speed. In comparison to the hardware cluster finder executed on the FPGA, it performs
additional and more complex tasks. These include checking TPC readout pads for baseline shifts and,
if present, applying corrections and deconvoluting overlapping clusters using a Gaussian fit to the clus-
ter shapes, which are simply split in the hardware version. Additional effects such as missing charge
in the gaps between TPC sectors and malfunctioning TPC channels are considered. Finally, after the
application of the drift-velocity calibration, cluster positions are transformed into the spatial x, y, and z
coordinate system. In the HLT, a separate transformation component performs this spatial transformation
as a later step. The evaluation in Section 3.2.1 demonstrates that the HLT hardware cluster finder delivers
a performance comparable to the offline cluster finder.

Benchmarks have shown that one C-RORC with six hardware cluster finder (HardwareCF) instances is
about a factor 10 faster than the offline cluster finder (OfflineCF) using 48 threads on an HLT node,
as shown in Fig. 8. The software processing time measurements were done on a HLT node with dual
Xeon E5-2697 CPUs for the single-threaded variant, the multi-threaded variant as well as the cluster
transformation component. The single-threaded variant was also evaluated on a Core-i7 6700k CPU to
show the performance improvements of using the same implementation on a newer CPU architecture.
The measurements were also performed on the C-RORC.
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Figure 8: Processing time of the hardware cluster finder and the offline cluster finder. The measurements were
performed on an HLT node (circles, triangles, diamonds), a newer Core-i7 6700K CPU (squares), and on the
C-RORC (inverted triangles).

Several factors increase the load on the hardware cluster finder in Run 2. The C-RORC receives more
links than the former H-RORC of Run 1, with the FPGA implementing six instead of the previously two
instances of the cluster finder. The TPC RCU2 sends the data at a higher rate, up to 3.125 Gbps. In
addition, during 2015 and 2016, the TPC was operated with argon gas instead of neon yielding a higher
gain factor, which resulted in a higher probability of noise over the zero-suppression threshold. In this
situation, the cluster finder detects a larger number of clusters, though a significantly large fraction of
these are fake. In addition, the readout scheme of the RCU2 was improved, disproportionately increasing
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the data rate sent to the HLT compared to the link speed, yielding a net increase of a factor of 2. These
modifications also required the clock frequency of the hardware cluster finder to be disproportionately
scaled up compared to the link rate in order to cope with the input data rates. Major portions of the
online cluster finder were adjusted, further pipelined, and partly rewritten to achieve the required clock
frequency and throughput. The peak-finding step of the algorithm was replaced with an improved version
more resilient to noise. This filtering reduces the number of noise induced clusters found, relaxes the
load on the merging stage, and thus reduces the cluster finder output data size. The reduced output size,
in combination with improvements to the software based data compression scheme, increases the overall
data compression factor of the HLT (see Section 3.5).

3.2.1 Physics performance of the HLT cluster finder for the TPC

In order to reduce the amount of data stored on tape, the TPC raw data are replaced by clusters recon-
structed in the HLT. The cluster-finder algorithm must be proven not to cause any significant degradation
to the physical accuracy of the data. The offline track reconstruction algorithm was improved by bet-
ter taking into account the slightly different behavior of the HLT cluster finder and its center of gravity
approach compared to the offline cluster finder. The performance of the algorithm has been evaluated
by looking at the charged-particle tracks reconstructed with the improved version of the offline track-
reconstruction algorithm, described in Section 3.3.

The important properties of the clusters are the spatial position, the width, and the charge deposited
by the traversing particle. Figure 9 compares the χ2 distribution of TPC tracks reconstructed by the
offline tracking algorithm using TPC clusters produced using either the HLT hardware cluster finder or
the offline version. Since the cluster errors coming from a fit to the track are parameterized and not
derived from the width of the cluster, the χ2 distribution is proportional to the average cluster-to-track
residual. On a more global level, the cluster positions in the ITS are used to evaluate the track resolution
of the TPC. The TPC track is propagated through the ITS volume and the probability of finding matching
ITS spatial points is analyzed. Since the ITS cluster position is very precise it is a good metric for TPC
track quality. However, because the occupancy for heavy-ion collisions is high, the matching requires an
accurate position of the TPC track with a good transverse momentum (pT) fit for precise extrapolation. It
was found that there are no significant differences in track resolution and χ2 between the offline cluster
finder and the new HLT cluster cluster finder, with the old HLT hardware cluster finder yielding a slightly
worse result.

Figure 10 shows the dE/dx separation power as a measure of the quality of the HLT cluster charge
reconstruction. Here, the separation power is defined as the dE/dx separation between the pions and
electrons scaled by the resolution. Since the dE/dx is calculated from the cluster charge, an imprecise
charge information would deteriorate the dE/dx resolution and consequently separation power. Within
the statistical uncertainty no substantial difference is observed between the offline and hardware cluster-
finder algorithms.

3.3 Track reconstruction in the TPC

In ALICE there are two different TPC-track reconstruction algorithms. One is employed for offline track
reconstruction and the other is the HLT track reconstruction algorithm. In this section, the HLT algorithm
is described and its performance compared to that of the offline algorithm.

In the HLT, following the cluster finder step, the reconstruction of the trajectories of the charged particles
traversing the TPC is performed in real time. The ALICE HLT is able to process pp collisions at a rate
of 4.5 kHz and central heavy-ion collisions at 950 Hz (see Sec. 4), corresponding to a data rate of 48 GB/s,
which is above the maximum deliverable rate from the TPC.

The TPC track reconstruction algorithm has two steps, namely the in-sector track-segment finding within
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Figure 9: The upper panel shows the distribution of TPC track χ2 residuals from offline track reconstruction
obtained using total cluster charges from offline cluster finder (Offline CF) and different versions of the HLT hard-
ware cluster finder (HWCF). Tracks, reconstructed using the TPC and ITS points, satisfy the following selection
criteria: pseudorapidity |η | < 0.8 and NTPC clusters ≥ 70. The ratios of the distributions obtained using the offline
cluster finder and the HLT cluster finder are shown in the lower panel.

individual TPC sectors and the segment merger, which concludes with a full track refit. The in-sector
tracking is the most compute intense step of online event reconstruction, therefore it is described in more
detail in the following subsection.

3.3.1 Cellular automaton tracker

Based on the cluster-finder information, clusters belonging to the same initial particle trajectory are
combined to form tracks. This combinatorial pattern recognition problem is solved by a track finder
algorithm. Since the potential number of cluster combinations is quite substantial, it is not feasible to
calculate an exact solution of the problem in real time. Therefore, heuristic methods are applied. One key
issue is the dependence of reconstruction time on the number of clusters. Due to the large combinatorial
background, i. e. the large number of incorrectly combined clusters from different tracks, it is critical that
the dependence is linear in order to perform online event processing. This was achieved by developing a
fast algorithm for track reconstruction based on the cellular automaton principle [40, 41] and the Kalman
filter [42] for modern processors [43]. The processing time per track is 5.4 µs on an AMD S9000 GPU.
The tracking time per track increases linearly with the number of tracks, and is thus independent of the
detector occupancy, as shown in Sec. 3.3.4.
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Figure 10: Separation power (Sπ−e) of pions and electrons (minimum ionizing particles, i. e. pions at 0.3 to 0.6
GeV/c versus electrons from gamma conversions at 0.35 to 0.5 GeV/c) as a function of the track momentum dip
angle, where tanλ = pz/pT. Comparison of dE/dx separation power using total cluster charges from Offline CF
and different versions of the HWCF.

Figure 11: Cellular automaton track seeding steps. a) Neighbor finder. Each cluster at a row k is linked to the
best pair of its neighbors from the next and the previous row. b) Evolution step. Non-reciprocal links are removed,
chains of reciprocal links define the tracklets.

The track finder algorithm starts with a combinatorial search of track candidates (tracklets), which is
based on the cellular automaton method. Local track segments are created from spatially adjacent
clusters, eliminating non-physical cluster combinations. In the two-stage combinatorial processing, the
neighbor finder matches, for each cluster at a row k, the best pair of neighboring clusters from rows k+1
and k−1, as shown in Fig. 11 (left). The neighbor selection criterion requires the cluster and its two best
neighbors to form the best straight line, in addition to having a loose vertex constraint. The links to the
best two neighbors are stored. Once the best pair of neighbors is found for each cluster, a consequent
evolution step determines reciprocal links and removes all non-reciprocal links (see Fig. 11) (right).

A chain of at least two consecutive links defines a tracklet, which in turn defines the particle trajectory.
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The geometrical trajectories of the tracklets are fitted with a Kalman filter. Then, track candidates are
constructed by extending the tracklets to contain clusters close to the trajectory. A cluster may be shared
among track candidates; in this case it is assigned to the candidate that best satisfies track quality criteria
like the track length and χ2 of the fit.

This algorithm does not employ decision trees or multiple track hypotheses. This simple approach is
possible due to the abundance of clusters for each TPC track and it results in a linear dependence of the
processing time on the number of clusters.

Following the in-sector tracking the segments found in the individual TPC sectors are merged and the
final track fit is performed. A flaw in this approach is that if an in-sector track segment is too short, e. g.
having on the order of 10 clusters, it might not be found by the in-sector tracking algorithm. This is
compensated for by a posterior step, that treats tracks ending at sector boundaries close to the inner or
outer end of the TPC specially, by extrapolating the track through the adjacent sector, and picking up
possibly missed clusters [44]. The time overhead of this additional step is less than 5% of the in-sector
tracking time.

The HLT track finder demonstrates an excellent tracking efficiency, while running an order of magnitude
faster than the offline finder, while also achieving comparable resolution. Corresponding efficiency and
resolution distributions extracted from Pb–Pb events are shown in Section 3.3.4. The advantages of the
HLT algorithm are a high degree of locality and the allowance of a massively parallel implementation,
which is outlined in the following sections.

3.3.2 Track reconstruction on CPUs

Modern CPUs provide SIMD instructions allowing for operation on vector data with a potential to speed
up corresponding to the vector width (to-date a factor up to 16 is achievable with the AVX512 instruction
set). Alternatively, hardware accelerators like GPUs offer vast parallelization opportunities. In order to
leverage this potential in the track finder, all the computations are implemented as a simple succession
of arithmetic operations on single precision floats. An appropriate vector class and corresponding data
structures were developed, yielding a vectorized version of the tracker that can run on both the Xeon
Phi and standard CPUs using their vector instructions, or additionally in a scalar way. Data access is
the most challenging part. The main difficulty is the fact that all tracklets have different starting rows,
lengths, and number of clusters requiring random access into memory instead of vector loads. While
the optimized and vectorized version of the Kalman filter itself yielded a speedup of around 3 over the
initial scalar version, the overall speedup was however smaller. Therefore, the track reconstruction is
performed on GPUs. Due to the random memory access during the search phase, it is impossible to
create a memory layout optimized for SIMD. This poses a bottleneck for the GPU as well, but it is less
severe due to the higher memory bandwidth and better latency hiding of the GPU. The vector library
developed in the scope of this evaluation is available as the open source Vc library [45]. It was integrated
into ROOT and is part of the C++ Parallelism technical specification [46]. The optimized data layout
originally developed for fast SIMD access has also proven very efficient for parallelization on GPUs.

3.3.3 Track reconstruction on GPUs

The alternative many-core approach using GPUs as general purpose processors is currently employed in
the HLT. All steps of the cellular automaton tracker and the Kalman filter can be distributed on many
independent processors. In order to be independent from any GPU vendor, the HLT code must not rely
exclusively on a proprietary GPU programming framework. The fact that the reconstruction code is used
in the ALICE offline framework, AliRoot, and that it is written in C++ poses several requirements on the
GPU API. Currently, the HLT tracking can optionally use both the CUDA framework for NVIDIA GPUs
or the OpenCL framework with C++ extensions for AMD GPUs. Even though OpenCL is an open,
vendor-independent framework, the current HLT code is limited to AMD because other vendors do not
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yet support the C++ kernel language. C++ templates avoid code duplication for class instances residing
in the different OpenCL memory scopes. The new OpenCL 2.2 standard specifies a C++ kernel language
very similar to the extension currently used, which will allow for an easy migration. The tracking algo-
rithm is written such that a common source file in generic C++ contains the entire algorithm representing
more than 90% of the code. Small wrappers allow the execution of the code on different GPU models and
also on standard processors, optionally parallelized via OpenMP. This aids in avoiding division between
GPU and CPU code bases and thus reduces the maintenance effort [47] since improvements to the track-
ing algorithm are developed only once. All optimizations are parameterized and switchable, such that
each architecture (CPU, NVIDIA GPU, AMD GPU) can use its own settings for optimum performance.

DMA
GPU
CPU 1
CPU 2
CPU 3

Time
Routine: Initialization Neighbor Finding

Tracklet Construction Tracklet Selection Tracklet Output

Figure 12: Visualization of the pipelined GPU processing of the track reconstruction using multiple CPU cores to
feed data to the GPU.

One such optimization for GPUs is pipelined processing: the execution of the track reconstruction on
the GPU, the initialization and output merging on the CPU, as well as the DMA transfer, all happen
simultaneously (Fig. 12). The pipeline hides the DMA transfer time and the CPU tasks and keeps the
GPU executing kernels more than 95% of the time. On top of that, multiple events are processed concur-
rently to make sure all GPU compute units are always fully used [43]. One obstacle already mentioned
in Section 3.3.2 is the different starting rows and lengths of tracks, which prevent optimum utilization
of the GPU’s single instruction, multiple thread units. A dynamic scheduling which, after processing a
couple of rows, redistributes the remaining workload among the GPU threads was implemented. This
reduces the fraction of wasted GPU resources due to warp-serialization due to a track that has ended
while another track is still being followed.

3.3.4 Performance of the track reconstruction algorithm

The dependence of the tracking time on input data size expressed in terms of the number of TPC clusters
is shown in Fig. 13. The hardware used for the HLT performance evaluation is the hardware of the HLT
Run 2 farm, which consists of the already several years old Intel Xeon 2697 CPU and AMD FirePro
S9000 GPU. The compute time using a modern system, i. e. an Intel Skylake CPU (i7 6700K) or NVIDIA
GTX1080 GPU, is also shown and demonstrates that newer GPU generations yield the expected speedup.
On both CPU and GPU architectures, the compute time grows linearly with the input data size. For small
events, the GPU cannot be fully utilized and the pipeline-initialization time becomes significant, yielding
a small offset for empty events. With no dominant quadratic complexity in the tracking algorithm an
excellent scaling to large events is achieved. The CPU performance is scaled to the number of physical
CPU cores via parallel processing of independent events, which scales linearly, while the tracking on
GPUs processes a single event in one go. Only one CPU socket of the HLT Run 2 farm’s server is used
to avoid NUMA (Non Uniform Memory Architecture).

The overall speedup achieved by the HLT GPU tracking is shown in Fig. 14. It is computed as the ratio
of the processing time of offline (CPU) tracking and the single-core processing time of GPU tracking.
Here the CPU usage-time for pre- and post-processing of GPU tracking scaled by the average number
of CPU cores used during the steps of GPU tracking is folded out of the total CPU-tracking time. For
the CPU version of the HLT tracking algorithm, this is exactly the speedup. For the GPU version, this is
the number of CPU cores equivalent, tracking-performance-wise, to one GPU. In this case, the full track
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Figure 13: Time required for execution of the tracking algorithm on CPUs and on GPUs as function of the input
data size expressed in terms of the number of TPC clusters. The lines represent linear fits to the distributions. The
merging and refitting times are not included in the track finding time.

reconstruction duration includes the merging and refitting time, whereas for Fig. 13 the non tracking-
related steps of the offline tracking, e. g. dE/dx calculation, are disabled. Overall, the HLT tracking
algorithm executed on the CPU is 15–20 times faster than the offline tracking algorithm. One GPU of
the HLT Run 2 farm replaces more than 15 CPU cores in the server, for a total speedup factor of up to
300, with respect to offline tracking. The CPU demands for pre- and post-processing of the old AMD
GPUs in the HLT server are significantly greater than for newer GPUs since the AMD GPUs lack the
support for the OpenCL generic address space required by several processing steps. The newer NVIDIA
GTX1080 GPU model supports offloading of a larger fraction of the workload and is faster in general,
replacing up to 40 CPU cores of the Intel Skylake (i7 6700K) CPU, or up to 800 Xeon 2697 CPU cores
when compared to offline tracking. Overall, in terms of execution time, a comparable performance is
observed for the currently available AMD and NVIDIA GPUs. It has to be noted that HyperThreading
was disabled for the measurements of Fig. 13 and Fig. 14. With HyperThreading, the Intel Core i7
CPU’s total event throughput was 18% higher. The GPU throughput can also be increased by processing
multiple independent events in parallel. A throughput increase of 32% is measured, at the expense of
some latency on the AMD S9000 [43]. For Fig. 14, the better GPU performance would also require
more CPU cores for pre- and post-processing, such that these speedups basically cancel each other out
after the normalization to a CPU core. The tracking algorithm has proven to be fast enough for the LHC
Run 3, in which ALICE will process time frames of up to 5 overlapping heavy-ion events in one TPC
drift time.

GPU models used in the HLT farms of both Run 1 and Run 2 offered a tracking performance equivalent
to a large fraction of the CPU cores on an HLT node. Thus, by equipping the servers with GPUs the
required size of the farm was nearly reduced by a half. The cost savings compared to tracking on the
processors in a traditional farm was around half a million CHF for Run 1 and is above one million CHF
for Run 2, not including the savings accrued by having a smaller network, less infrastructure, and lower
power consumption. If the HLT only used CPUs, online track reconstruction of all events, using the
HLT algorithm, would be prohibitively expensive. Running the offline track reconstruction online would
accordingly be even more expensive. This shows that fast tracking algorithms that exploit the capabilities
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Figure 14: Speedup of HLT tracking algorithm executed on GPUs and CPUs compared to the offline tracker
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as a function of the input data size expressed in terms of the number of TPC clusters. The plus markers show the
speedup as a function of the number of TPC clusters with the HLT tracking executed on the CPU. The cross(astrisk)
markers show the speedup obtained with the tracking executed on a older(newer) GPU.

of hardware accelerators are mandatory for future high luminosity heavy-ion experiments like ALICE in
the LHC Run 3 or at the experiments that will be setup at the Facility for Antiproton and Ion Research
(FAIR) at GSI [48].

The tracking efficiencies, in terms of the fraction of simulated tracks reconstructed by offline and HLT
algorithms, are shown in Fig. 15. These efficiencies calculated using a HIJING [49] simulation of Pb–Pb
collision events at

√
sNN = 5.02. The figure distinguishes between primary and secondary tracks as well

findable tracks. Findable tracks are reconstructed tracks that have at least 70 clusters in the TPC, and
both offline and HLT algorithms achieve close to 100% efficiency for findable primaries. In comparison,
when the track sample includes tracks which are not physically in the detector acceptance or tracks with
very few TPC hits the efficiency is lower. The minimum transverse momentum measurable for primaries
reaches down to 90 MeV/c, as tracks with lower pT do not reach the TPC. The HLT tracker achieves a
slightly higher efficiency for secondary tracks because of the usage of the cellular automaton seeding
without vertex constraint. In preparation for Run 3, the HLT tracking has also been tuned for the low-pT
finding efficiency in order to improve looper-track identification required for the O2 compression [21].
Both offline and HLT trackers have negligible fake rates, while HLT shows a slightly lower clone rate
at high-pT, which is due to the approach used for sector tracking and merging. The clone rate increases
significantly for low-pT secondaries, in particular for the HLT. This is not a deficit of the tracker but
rather is caused by looping tracks inside the TPC for which the merging of the multiple legs of the loop
is not yet implemented.

The track resolution with respect to the track parameters of the MC track taken at the entrance of the TPC
is shown in Fig. 16. These track parameters include the y and z spatial positions in the local coordinate
system (see Fig. 7), the transverse momentum (pT), the azimuthal (φ ) and dip (λ ) angles. The HLT
tracker shows only a nearly negligible degradation compared to the offline algorithm. In order to provide
a fair comparison of the tracking algorithms independent from calibration, the offline calibration was
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Figure 15: Tracking efficiency of the HLT and offline trackers as function of the transverse momentum calculated
as the ratio of reconstructed tracks and simulated tracks in HIJING generated Pb–Pb events at

√
sNN = 5.02 TeV,

shown for tracks that are a) primary, b) secondary, c) findable primary, and d) findable secondary. Findable tracks
are defined as reconstructed tracks that have at least 70 clusters in the TPC.

used in both cases. This guarantees the exact same transformation of TPC clusters from pad, row, and
time to spatial coordinates and the same parameterization of systematic cluster errors due to distortions
in the TPC that result from an accumulation of space charge at high interaction rates. Even though the
calibration is the same, offline performs some additional corrections to account for the space-charge dis-
tortions, e. g. a correction of the covariance matrix that takes the correlation of systematic measurement
errors in locally distorted regions into account. The mean values of the distributions obtained from the
HLT and offline trackers are identical and the trackers do not show a significant bias for either of the
track parameters. The remaining differences in the resolution originate from TPC space-charge distor-
tions, since this correction is not yet implemented in the HLT tracker. This was verified by using MC
simulations without the space-charge distortions, where differences in the resolution distribution mostly
disappeared.

Overall, the HLT track reconstruction performance is comparable with offline track reconstruction.
Speeding up the computation by an order of magnitude introduces only a minor degradation of the track
resolution compared to offline. A comparison of efficiency and resolution of GPU and CPU version of
the HLT tracking yields identical results. However, the bit-level CPU and GPU results are not 100%
comparable because of different floating point rounding and concurrent processing.

3.4 TPC online calibration

High quality online tracking demands proper calibration objects. Drift detectors, like the TPC, are sensi-
tive to changes in the environmental conditions such as the ambient pressure and/or temperature. There-
fore, precise calibration of the electron drift velocity is crucial in order to properly relate the measured
arrival time to the TPC end-caps spatial positions along the z axis. Spatial and temporal variations of
the properties of the gas inside the TPC as well as the geometrical misalignment of the TPC and ITS
contribute to misalignment of individual track segments belonging to a single particle. Corrections for
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Figure 16: Mean value and track parameter resolutions of the HLT and offline trackers as function of the transverse
momentum measured in HIJING generated Pb–Pb events at

√
sNN = 5.02 TeV. The resolution of a) y and b) z spatial

positions, c) azimuthal angle (φ ), d) lambda (λ ), and e) relative transverse momentum are shown.

these effects are found by comparing independently fitted TPC track parameters with those found in the
ITS [50]. For the online calibration, the cycle starts by collecting data from processing components,
which run in parallel on all the HLT nodes. When the desired amount of events (roughly 3000 Pb–Pb
events) is obtained, the resulting calibration parameters are merged and processed. To account for their
time dependence, the procedure is repeated periodically. At the beginning of the run, no valid online
calibration exists. Therefore, the HLT starts the track reconstruction with a default calibration until the
online calibration becomes available after the first cycle.

The offline TPC drift-velocity calibration is implemented within the ALICE analysis framework, which
is optimized for the processing of ESDs. In addition, the calibration algorithm produces a ROOT object
called ESD friend, which contains additional track information and cluster data. Since it is relatively
large, the ESD friend is not created for each event, rather it is stored for the events that are used for
the calibration. Within the HLT framework the data are transferred between components via contiguous
buffers. Hence these ESD objects must be serialized before sending and deserialized after receiving a
buffer. Since this flow, comparable to online reconstruction, is resource-hungry a custom data represen-
tation was developed, called Flat ESD. Although the Flat ESD shares the same virtual interface with the
ESD, the underlying data store of the flat structure is a single contiguous buffer. By design it has zero
serialization/deserialization overhead. There is only a negligible overhead related to the virtual function
table pointer restoration. Overall, creation, serialization, and deserialization of the Flat ESD is more
than 10 times faster compared to the standard ESD used in offline analysis, as demonstrated in Fig. 17.

The HLT provides a wrapper to execute offline code inside the HLT online processing framework using
offline configuration macros. The calibration components on each compute node process the calibration
tasks asynchronously with respect to the main in-chain data flow. Once sufficient calibration data are
collected, the components send their output to an asynchronous data merger. The merged calibration
objects are then sent to a single asynchronous process which calculates the cluster transformation maps.
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Figure 17: Time required for the creation, serialization, and deserialization of the Flat ESD vs. the standard ESD
for offline analysis as a function of the number of TPC tracks.

These maps are used to correct the cluster position before the track finder algorithm is executed in order
to avoid to interfere with the main HLT chain. Finally, finishing the cycle, these maps are distributed back
to the beginning of the chain where they are used in the online reconstruction. The cycle is illustrated in
Fig. 6. The calibration objects from a cycle are used until the following cycle finished and the output is
available. The asynchronous transport uses ZeroMQ.

Depending on the availability of computing resources, which rely on beam and trigger conditions, the
HLT runs up to 3 calibration worker processes per node on its 172 compute nodes. Events for the
calibration are processed distributedly by the 3× 172 instances of the calibration task. This number is
a parameter: more instances would need more compute resources but in turn would yield more data for
calibration in a shorter amount of time. A sufficient calibration precision requires approximately 3000
Pb–Pb event, which are collected in roughly 2 minutes with the number of instances mentioned above.
The subsequent merging of the data, transformation map calculation and distribution to all reconstruction
processes takes about another 30 seconds. While the TPC drift time calibration is stable within a 15
minute time window, the total calibration cycle time never exceeds this stable calibration time window.

One difference between online and offline calibration is the availability of real-time ambient pressure and
temperature values. Currently, the HLT only has access to the pressure value at the beginning of the run,
and does not have access to the temperature at all. In contrast, offline has the full pressure and temperature
data over time. This yields two effects shown in Fig. 18a, in which the drift-velocity correction factor is
reported as a function of time. First, the drift-velocity correction factor at the beginning of each run is
shifted relative to the offline calibration, since the HLT calibration process uses an outdated temperature
compared to offline. Second, during the run the change of the pressure slightly affects the drift velocity.
In the offline case, this is accounted for, while HLT sticks to the pressure value at the beginning of the
run. For the spatial TPC cluster positions, it does not play a role whether the temperature change is
accounted for by the base drift velocity estimation or by the correction factor. Figure 18b shows a run
in which the HLT uses the correct temperature at the beginning of the run, obtaining the exact same
calibration as offline. It should be noted that in the calibration procedure for Run 3, the temperature
value will be available a the beginning of each run.
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(b) TPC drift-time correction factor for a duration of one run (4
hours) measured during pp data taking at

√
s = 13 TeV. The correct

temperature stored at the beginning of the run was included manu-
ally.
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(c) TPC drift-time correction factor for a period of 5 months measure
during pp data taking at
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Figure 18: TPC drift-time correction factor obtained by the online and offline calibrations as a function of time
for various periods of time. Gaps in the distributions correspond to periods without beam.
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Figure 19: Average differences of the TPC cluster position along z-axis calculated with drift-velocity correction
factors from the online (HLT) and offline calibration. The differences are of the order of the intrinsic detector
resolution. Calibration of the forward and backward halves of the TPC are computed independently. The error
bands represent the statistical error, along with the r and ϕ dependent differences of online and offline calibration.

The drift-velocity calibration factors are in agreement for 90% of the runs. The remaining 10% of the
runs are primarily composed of short data taking runs, where there was not enough time to gather enough
data for online calibration, or test runs in special conditions that prevented a TPC calibration. Without
online calibration, the TPC cluster position along the z-axis in the online reconstruction deviate by up to
3 cm from the calibration position available offline. The online calibration reduces this deviation down to
0.5 mm, which is in the order of the intrinsic TPC space point resolution, see Fig. 19. Online calibration
objects can be used offline, but since the persistent data are not modified, calibration procedures can still
run offline if needed.

3.5 TPC data compression

In parallel with the tracking and calibration, the data compression branch of the HLT chain compresses
the TPC clusters and replaces the TPC raw data with these compressed clusters [51]. The backbone of
the data compression is Huffman entropy encoding [52]. Entropy encoding of the pure TPC ADC values
achieves only a maximum compression factor of two, which is less than the compression achievable
on the cluster level. The data size is reduced in three consecutive steps. It begins with the hardware
cluster finder converting raw data into TPC clusters, calculating properties like total charge, width, and
coordinates. The second step converts the computed floating point properties into fixed point integers
with the smallest unit equaling the detector resolution. Finally, Huffman encoding compresses the fixed
size properties. During Run 1, the average total compression factor was 4.3. In preparation for Run 2
compression techniques were improved upon. Figure 20 shows the compression ratio versus the input
data size expressed in terms of the number of TPC clusters in 2017, when an average compression factor
of 7.3 was achieved.

Table 2 gives an overview of the improvements of the HLT performance on the compression factors for
different data-taking scenarios. The baseline is the compression ratio of 4.3 achieved during Run 1,
shown in the leftmost column. In this case, the cluster finding and merging of clusters at readout branch
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Figure 20: Total HLT TPC data compression ratio including improved TPC online cluster finder and Huffman
compression in Run 2 on 2017 pp data as a function of the input data size expressed in terms of the number of TPC
clusters.

Table 2: Compression factors of the different processing steps for the TPC.
Configuration
Data taking period 2013 2015 Pb–Pb 2016 pp 2017 pp 2017 pp 2016 pp 2015 Pb–Pb
TPC gas neon argon argon neon neon argon argon
RCU version 1 1 2 2 2 2 2
Cluster finder version run 1 old old old improved improved improved
Compression version run 1 / 2 run 1 / 2 run 1 / 2 run 1 / 2 run 1 / 2 run 3 prototype run 3 prototype
Compression step
Cluster finder 1.20x 1.28x 1.50x 1.42x 1.81x 1.72x 1.70x
Branch merging 1.05x 1.05x - - - - -
Integer format 2.50x 2.50x 2.50x 2.50x 2.40x 2.40x 2.40x
(bits per cluster) 77 bits 77 bits 77 bits 77 bits 80 bits 80 bits 80 bits
Entropy reduction
(savings after entropy encoding)
Position differences - 16% / -7.2 bits 2% / -1.2 bits 2% / -1.0 bits 2% / -1.0 bits -1.0 bits -4.5 bits
Track model - - - - - -14.5 bits -14.3 bits
Track model + differences - - - - - -8.0 bits -8.41 bits
Logarithmic precision - - - - 15% / -6.6 bits -7.3 bits -7.3 bits
Entropy encoding
Huffman coding 1.36x 1.75x 1.49x 1.46x 1.68x 2.08x 2.12x
Arithmetic coding - - - - - 2.18x 2.22x
Total compression 4.26x 5.89x 5.58x 5.18x 7.28x 9.00x 9.10x
(bits per cluster) 56.6 bits 44.0 bits 51.7 bits 52.8 bits 47,7 bits 36,7 bits 36,0 bits

borders yielded a compression factor of 1.2. Storing the cluster information in fixed point integer format
reduced the size by a factor of 2.5, requiring 77 bits per cluster thereafter. The entropy coding using
Huffman compression reduced the average number of bits per cluster down to 56.6.

Several boundary conditions changed at the beginning of Run 2. The TPC gas was changed from neon
to argon in 2015 and 2016 which led to a higher gain. This increased the noise over the zero-suppression
threshold, which led to a larger raw data size and an increase of the fake clusters. The compression
factor of the cluster finder itself increases, because the fraction of noise in the raw data that is rejected is
larger than that in Run 1. In addition, the readout hardware was changed to the RCU2 and the C-RORC
(see Section 2.3), allowing all incoming data of one TPC pad-row to be processed together. Before, the
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pad-row was split into two branches which were processed independently and thus required a successive
branch merging step to treat the clusters at the branch borders correctly. This is now obsolete with the
new hardware, leading to a better physics performance and higher compression during the cluster finding
stage.

Additional processing steps can reduce the cluster entropy and improve the entropy encoding. In partic-
ular, for high occupancy Pb–Pb events, the spatial distribution of the clusters is mostly uniform, but the
distances between adjacent clusters are small. Storing position differences instead of absolute positions
reduces the entropy and yields a higher compression factor. On average this saves 7.2 bits for Pb–Pb data,
reducing the size by 16%. This is less efficient for pp data in which the occupancy is lower resulting in
the position differences being much larger, leading to an average size reduction of only 1.2 bits. Overall,
this and other format optimizations have improved the compression factors to 5.5 for pp and to 5.9 for
Pb–Pb for Run 2. For clusters associated to tracks, an alternative approach consists of storing the track
properties and the residuals of the cluster-to-track position are stored [51, 53], listed as ”Track model” in
Tab. 2. These residuals also have a small entropy and are ideally suited for Huffman compression. This
is particularly useful for pp data, where the position differences method does not perform well.

The two rightmost columns of Tab. 2 show compression factors obtained by a proof-of-concept prototype
for the compression developed for Run 3, using data from Run 2. The prototype includes an advanced
version of the track model compression [54] , which refits the track in a distorted coordinate system,
yielding significantly smaller residuals than first track model compression during Run 1 [17]. The track-
model compression saves on average more than 14 bits per cluster, both for pp and Pb–Pb data. In
turn, it deteriorates the compression of the position differences method that is used for clusters not
assigned to tracks because the occupancy of non-assigned clusters decreases, increasing the entropy
of the differences. The “Track model + differences” row of the table shows the total average savings
for all clusters, calculated as the weighted average of the savings achieved by the track-model and the
position-differences methods. For Pb–Pb data, the result of 8.41 bits is only slightly better than the pure
position differences method. However, the compression factor of pp data reaches the one of Pb–Pb data.
There is an even more important benefit of track model compression. It maintains the cluster to track
association of HLT tracks for the offline analysis without requiring additional storage or a special data
format. In this way, the tracks that were found online by the HLT can be immediately used as seeds by
the offline tracker. Having access to the cluster association, the offline tracker can run the slower but
more sophisticated routines on the tracks. This approach saves memory and compute cycles during the
offline track reconstruction and is currently being commissioned. The Run 3 prototype also shows that,
by using arithmetic compression instead of Huffman compression to obtain optimal entropy encoding, a
savings of roughly 5% is achieved.

The fixed point integer format is not ideal for all cluster properties. For the cluster width and charge,
only a certain relative precision but no absolute precision is needed. Therefore, only a certain number
of precision bits after the leading non-zero bit are allowed, and all following less significant bits are
forced to zero, implementing proper rounding. This practically emulates a floating point format, while
the entropy compression already guarantees the best storage, optimizing away the invalid values with
more non-zero bits. By using only three non-significant bits for the cluster width and four for the charge,
a savings of 15% of the 2017 pp data volume was obtained.

With the argon gas being used in the TPC at the beginning of Run 2, a significant overhead of fake
clusters emerging from the increased noise was faced. The cluster finder searches for charge peaks and
merges them, creating fake clusters if the total adjacent noise exceeds a minimum threshold. Therefore,
the HLT cluster finder was improved for the 2017 data taking to reject this noise by an improved peak
finding heuristic. This improved hardware cluster finder (see Section 3.2) reduced the amount of clusters
reconstructed in the TPC in pp data collected in 2016 when argon was the TPC gas by 32%. The reduction
was approximately 21% for the pp data collected in 2016 when the TPC gas was neon. It also sped up
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the tracking and yielded slightly better track parameters. Note that the gain in compression after the
Huffman encoding can differ between between the two data sets because noise clusters have different
entropy.

Storage space is a limiting factor in data taking, even with the inclusion of HLT compression. Currently
ALICE uses almost the entire allocated capacity, which is roughly 10 PB per year. TPC data are by far
the largest contributor taking up more than 90% of the raw data volume. The offline software employs
built-in ROOT file compression on the raw data from the other detectors. Their relative contribution
increases significantly after the more than five-fold compression of the TPC data by the HLT in 2016.
Overall, the HLT compression increases the total number of events ALICE can record and store by
more than a factor of 4 within the given storage budget. In the case of Pb–Pb data taking, also the
raw data bandwidth would exceed the available capacity necessitating the real-time compression in the
HLT. Aggregating all compression steps of the Run 3 prototype, a total compression factor of 9 was
achieved for both pp and for Pb–Pb data. In the future, additional compression steps are foreseen, like
rejecting TPC clusters attached to tracks with transverse momenta below 50 MeV/c, clusters attached to
additional legs of looping tracks, and clusters attached to track segments with large inclination angles,
which are not used in physics analyses. Using this cluster rejection, an additional compression factor
of 2 is expected, bringing the compression factor close to the foreseen factor of 20, which is necessary
for the O2 computing upgrade.

3.6 Quality Assurance for TPC, EMCAL, and other detectors

The HLT, in addition to online reconstruction and compression, also runs various types of QA and physics
analysis components that allow for real-time monitoring of the physics performance of the ALICE appa-
ratus. These frameworks gather and process various types of information: from event, track and vertex
properties to data compression parameters. The HLT components executing these frameworks can be
classified as fast, slow, and/or asynchronous. The fast components (e. g. EMCal and HLT’s own QA)
require the full data sample and therefore are considered prompt components, running in-chain. Slow
components that simply sample some of the reconstructed events are executed out-of-chain, subscribing
to the main chain transiently on a dedicated monitoring node, processing events on a best effort basis.
Finally, some QA components run asynchronously on all nodes using the wrapper for the ALICE physics
analysis task framework, which was developed for and is also used in online calibration [55] (compare
Section 3.4).

In the asynchronous mode, the full statistics (or a subset proportional to the dedicated processing capac-
ity) can be processed without disrupting the standard HLT operations. Several tasks from the TPC team
are now running within the HLT in this mode. Another component that runs out-of-chain is the lumi-
nous region component, which provides information on the size and position of the region of the particle
beams to the LHC team. In this case, all event information of interest are processed synchronously, with
the merging and fitting stages being performed out-of-chain. The LHC is updated with these data in 30
second intervals.

In addition to running asynchronously the HLT also performs online monitoring syncronously. This
allows access to the full data sample, however the components must be very stable to not interfere with
HLT operations. With this infrastructure histograms can be created and modified on-the-fly to allow for
e. g. prompt studies of trigger selections per histogram. This infrastructure also supports the correlation of
arbitrary quantities like V0/T0/ZDC detector signals versus the number of ITS/TPC tracks. The benefit is
that all events can be processed by running syncronously at the full event rate. The histograms produced
by the in-chain components are continuously merged (asynchronously) and can be accessed at any time
during the run. The detector teams of TPC and EMCal have also implemented similar QA tasks, which
run in an analogous manner. The final monitoring histograms, run- and time-dependent, are published
online for simple access. Furthermore, the data for HLT monitoring are available on the data quality
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monitoring station utilized by the ALICE shift crew.

Data exchange between asynchronous components and a part of external communication (e. g. related
to QA) is handled by the ZeroMQ messaging library. The processing components need to exchange a
multitude of data types related to a single entity (e. g. a triggered event). Data originates from different
sources, e. g. shared memory holding raw or reconstructed data processed syncronously, buffers provided
by serialization libraries and schema evolution data (e. g. ROOT streamers). Each data buffer needs to
be uniquely identified to allow for correct decoding on the receiving end: metadata that annotates the
contents and serialization strategy of a data buffer are constructed separately and sent together with the
data. The association of metadata to data buffers is maintained at the transport layer level by ordering
the header-payload pairs in a sequence. The ZeroMQ multi-part functionality allows for the atomic
transport of multiple buffers and buffer ordering preservation; it is wrapped by a thin abstraction layer
to provide an easy to use vectored input/output-like interface. In this scheme, many annotated data parts
can efficiently be added to a single ZeroMQ message without the overhead being typically associated to
message (de-)serialization [36].

4 Performance analysis of global HLT operation

In addition to system stability, the HLT must ensure that during normal operations any throttling of the
data taking of the experiment is avoided. When one of the HLT processing components is too slow to
process the incoming data, for example when the network can not manage the data rate or when the
framework cannot schedule the events, the HLT internal buffers become full and this results in the HLT
sending back-pressure to the experiment and pausing data taking until there is again buffer space to
accept more data.

Table 3: Maximum data rates and event rates in the HLT for different load scenarios in data replay.
Scenario Detectors Input size TPC rate Total event rate Limiting factor
Single Input Link ZDC 6 MB/s 0 10 kHz Framework
pp 5.02 TeV TPC, ITS, EMCAL, V0 8.3 GB/s 4.5 kHz 4.5 kHz CPU load
pp 13 TeV TPC, ITS, EMCAL, V0 48 GB/s 2.4 kHz 2.4 kHz optical link bandwidth
Pb–Pb 5.02 TeV TPC, ITS, EMCAL, V0, ZDC 48 GB/s 950 Hz 950 Hz optical link bandwidth
Pb–Pb 5.02 TeV ITS, EMCAL, V0, ZDC 3.5 GB/s 0 6 kHz Framework
pp 13 TeV All 49 GB/s 2.4 kHz 6 kHz optical link bandwidth / Framework
Pb–Pb 5.02 TeV All 51 GB/s 950 Hz 3.75 kHz optical link bandwidth / CPU

Data rate and event rate are, although related, two different factors. For instance, small events at very
high rate cause excessive load on the scheduling of related interprocess communication while the utilized
network bandwidth can still be small. On the other hand, a few large events can saturate the network.

In 2016, the HLT caused on average less than 100 µs of back-pressure per run, an insignificant amount
compared to the usual run duration of several hours. Therefore, the HLT has a negligible effect on the data
taking efficiency. Besides observations during the operation, extensive data-replay based measurements
were conducted to ensure that the HLT manages to process all data and event rates for all the foreseen
data taking and trigger scenarios.

Data replay (see Section 2.3) allows for the evaluation of the HLT performance under a certain load
scenario given the exact same conditions as in normal operation. The maximum input data rate into the
HLT is limited by the number and the link speed of the optical link fibers coming from the detectors. The
dominant contribution is from the TPC with 216 links, each running at 3.125 GBit/s. However, not all
links can send data at full rate simultaneously. This is due to the geometry of the TPC resulting in the
number of channels sent per link not being constant. Considering also the link protocol overhead, the
maximum possible input rate from the TPC is 48 GB/s. Note that, during real operation, the TPC pauses
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the readout during sampling and that the TPC gating grid and detector busy time reduce the maximum
rate. Therefore, the real rate is below 40 GB/s at less than 2 kHz, which gives some additional margin.
Additionally 10 GB/s can originate from the other detectors. In the following, the data replay is analyzed
using two data sets: pp events at high luminosity and maximum pile-up as well as minimum bias Pb–Pb
events. Considering the data size, the replay of the Pb–Pb data set was run at 950 Hz and the pp data set
at 2.5 kHz, which correspond to a TPC input rate of 48 GB/s in both cases. Other detectors can operate at
higher event rates than the TPC. The ALICE trigger scenarios for Run 2 foresaw a rate below 2 kHz for
the central barrel detectors with an additional few hundred Hz from both the fast-interaction detectors and
the muon detector. This results in a total maximum aggregate event rate below 3.5 kHz when all trigger
clusters are at maximum rate at the same time. A mixture of additional events without TPC contribution,
to obtain a higher event rate for other detectors, was added to the replay data set.

Table 3 gives an overview of the maximum rate handled by the HLT for various scenarios. The HLT
framework imposes an event-rate limit of 10 kHz for a front-end node with a single input link, and a
limit of 6 kHz for event-merging of the twelve links of a fully connected C-RORC [56]. Both limits do
not apply in practice because the fastest foreseen trigger scenario peaks at an aggregate rate of 3.5 kHz.
The table also shows that the CPU capacity will only become critical at event rates not supported by the
detectors. The current GPU-based tracking achieves a peak TPC processing rate of 2.4 kHz for Pb–Pb
data with an 8 kHz interaction rate, if it runs locally and standalone using all compute nodes. Currently,
this leaves a 50% margin on the GPU capacity, which can be used for the implementation of additional
compute-intensive online reconstruction steps.

The experience during Run 1 demonstrates that the performance of the event merging task is critical for
the maximum achievable rate. Consequently, both the interprocess communication in the framework (see
Section 2.6) as well as the HLT configuration was improved by having a more balanced layout, thereby
reducing the load on the event fragment merger. These changes improved the maximum rates from 3
to 6 kHz for pp and from 500 to 950 Hz for Pb–Pb collisions.

In addition to the input and processing capacity, the HLT must have sufficient bandwidth of the internal
network and of the output links to DAQ. The above scenarios lead to a maximum outgoing network
bandwidth of 1.38 GB/s per input node, and for the current TPC data compression factor, a maximum
of 1.53 GB/s received per output node. In total, 10.7 GB/s are sent to DAQ. Using the current HLT chain
without processing, the framework has been tested up to input and output rates of 2.4 GB/s per node. This
leaves already a margin of more than 50%, and close to 6 GB/s of network bandwidth per node accessible
through the use of multiple transport streams. The optical link rates to DAQ and data storage systems
have been tested to a maximum aggregate transfer speed of 12 GB/s, which is above the upper bound
for the output rate of 10.7 GB/s. For the current HLT chain, the limiting factor is the actual link speed
of the 28 fibers to DAQ, which are running at the highest possible speed of 5.3 GBit. The output rate
could be increased by using more physical fibers, for which the HLT already has spare ports available.
As presented in Section 2.3, the HLT C-RORC and the PCI Express bus in the FEP nodes are also able
to handle any incoming data from the up to twelve optical links per node.

Overall, the current HLT farm handles all foreseen workloads for Run 2 without imposing backpressure.
Looking ahead to Run 3, the available resources will be used to test and prototype the many new features
planned for the O2 system as early as possible under real conditions in the HLT.

4.1 HLT operation stability

The HLT is an integral part of the ALICE data taking chain and its operational stability is critical because
a failure would interrupt the data taking. Moreover, without the HLT compression a maximum readout
rate is no longer possible due to the bottlenecks described above. In addition, storage space becomes a
problem due to the fact that uncompressed raw data quadruples storage requirements.
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Figure 21: Number of data taking runs terminated due to failure in the HLT during Run 1 and Run 2 since 2011,
when the TPC data compression in the HLT was introduced. Missing months correspond to long shutdowns,
end-of-year shutdowns, commissioning phases for the data compression and recommissioning for updated TPC
readout. The yearly averages are shown as long tick marks along the right-side y-axis.

Figure 21 shows the stability of the HLT over the period from 2011 to 2017. The figure includes only
runs in which ALICE was collecting physics data and with the HLT performing TPC data compression.
Overall, only a small percentage of data taking runs ended due to HLT problems. Since October 2011,
there were only three months during which the HLT caused more than 5% of the data taking runs to fail.
The largest percentage of failures occurred in November 2011. At that time the TPC compression was
still in the commissioning phase and for the first time Pb–Pb data were collected at a higher interaction
rate with respect to Run 1, which in turn demanded additional fine tuning. On average the end-of-run
reasons associated with HLT failures were less than 2%. Compared to the beginning of data taking
during Run 1 [57], the fraction of runs failing due to HLT issues was reduced by roughly a factor of 2.
The absolute rate, which was above 100 failures per year in Run 1 decreased considerably. In total,
only 18 physics runs failed due to an HLT issue in 2016. The causes were: GPU driver problems causing
reboots solved by driver update (2 runs), GPU stuck due to driver problems (4 runs), malfunctioning
GPU (2 runs), malfunctioning CPU (2 runs), unexpected node reboot (1 run), uncorrectable machine
check exception (4 runs), and network communication problems (3 runs).

A significant fraction of failures are due to GPU driver problems, which are still not fully resolved by the
vendor. A workaround was implemented that outsources the GPU reconstruction to a different operating
system process. If the GPU or the driver get stuck, the HLT chain continues normal operation and skips
the track reconstruction for the few events scheduled for that process. This reduces the statistics for
online QA and calibration only negligibly.

Despite several failures that happened during the debugging of a reoccurring hardware problem at the
beginning of July, the HLT had a low failure rate in 2017. In the future, additional preemptive measures
will be deployed for network, hard disk, and machine check failures, to reduce the failure rate even
further.

For a better estimate of how much data taking time is lost due to HLT failures, the total time between
the occurrence of the problem and the moment in which data are recorded is again calculated. This
includes possible unsuccessful measures to continue data taking without a full restart as well as stop and
startup time. This is a more realistic measurement of the dead time, compared to an estimate based on

31



The ALICE High Level Trigger ALICE Collaboration

the time between end-of-run and start of the next data taking run. However, this is an upper bound, as
it also includes time for unrelated actions performed in between. In this metric, the 18 failures in 2016
interrupted the data taking for 11233 seconds in total out of 1409 hours of data taking with HLT in its
full configuration. This means that the HLT failures amounted to less than 0.22% of the available data
taking time.

5 Outlook

The ALICE HLT has been operational since November 2009 with the first pp collisions at LHC at
√

s =
0.9 TeV and has since then processed all subsequent data. Operated with a combination of a fast FPGA
hardware cluster finder and GPU tracker the ALICE HLT pioneered the use of hardware accelerator
technologies in real-time computing at the LHC.

During the LHC Run 3 ALICE will collect 100 times more data with respect to what was recorded dur-
ing Run 1 and Run 2. The increase in statistics will be made possible by a tenfold increase of the LHC
luminosity as well as the change of the detector readout mode from triggered to continuous, allowing
the readout of the full Pb–Pb interaction rate of up to 50 kHz. The data stream has to be compressed
by a factor of 20 in order to be transported to the storage element for permanent storage. Achieving this
compression ratio requires a paradigm shift in processing: all data will be reconstructed and calibrated
online synchronous to the data taking. In addition to compression schemes already discussed in Sec-
tion 3.5, parts of the data, e. g. clusters positively identified to be disposable, will be discarded making
the overall compression scheme lossy. The quality of online reconstruction and calibration will therefore
be paramount.

Concepts and technologies which are developed as part of the HLT (described in this paper and in Sec-
tions 2.6, 3.3, and 3.5) are being studied, prototyped and tested already now in a production environment,
also being adapted and further developed in the software framework of O2.
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A. Kluge34 , M.L. Knichel34 , A.G. Knospe125 , C. Kobdaj114 , M. Kofarago144 , M.K. Köhler102 , T. Kollegger104 ,
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