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The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of 
electrons from semi-leptonic decays of beauty hadrons with rapidity |y| < 0.8 and transverse momentum 
1 < pT < 10 GeV/c, in pp collisions at √s = 2.76 TeV. Electrons not originating from semi-electronic 
decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. 
The production cross section of beauty decay electrons is compared to the result obtained with an 
alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay 
electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section 
within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e =
3.47 ± 0.40(stat)+1.12

−1.33(sys) ± 0.07(norm) µb, was extrapolated to full phase space using Fixed Order 
plus Next-to-Leading Log (FONLL) calculations to obtain the total bb̄ production cross section, σbb̄ =
130 ± 15.1(stat)+42.1

−49.8(sys)+3.4
−3.1(extr) ± 2.5(norm) ± 4.4(BR) µb.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Perturbative Quantum Chromodynamics (pQCD) calculations of 
the production of heavy (charm and beauty) quarks can be carried 
out with well-controlled accuracy, due to the hard (high Q 2) scale 
imposed by the large mass of heavy quarks [1–3]. In addition, the 
large mass implies that heavy quark production in high energy col-
lisions of heavy ions occurs early compared to the formation time 
of the strongly interacting partonic matter generated in such colli-
sions [4–7]. Therefore, the study of heavy quark production in pp 
collisions is of interest for two reasons: the measurement of their 
production cross section provides essential tests of pQCD, and such 
measurements yield the necessary reference for the correspond-
ing measurements performed in heavy-ion collisions. Properties of 
the strongly interacting, partonic medium generated in high energy 
heavy-ion collisions are studied using various heavy-quark observ-
ables [8–11].

The ALICE Collaboration has reported heavy-flavour measure-
ments in pp collisions at 

√
s = 2.76 TeV for D meson production 

via hadronic decays at mid-rapidity [12], heavy-flavour hadron pro-
duction via semi-leptonic decays to electrons (mid-rapidity) and 
muons (forward rapidity) [13,14], and J/ψ production using the 
di-muon (forward rapidity) and di-electron (mid-rapidity) decay 
channels [15]. All measurements are in good agreement with pQCD 
calculations for inclusive qq̄ production, and with QCD-inspired 
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models for J/ψ production. Since both charm and beauty hadrons 
decay semi-leptonically, the measured distribution of heavy-flavour 
decay muons and electrons have contributions from both.

The objective of the analyses presented here is to obtain 
the total beauty production cross section by measuring the 
pT-differential inclusive production cross section of electrons from 
semi-electronic decays of beauty hadrons. The measurement is 
performed in the mid-rapidity region (|y| < 0.8) with the ALICE 
detector for 1 < pT < 10 GeV/c, in pp collisions at 

√
s = 2.76 TeV. 

The total bb̄ production cross section is determined by the extrap-
olation of the measured pT-differential production cross section 
to full pT and y ranges. The measured relative beauty contri-
bution to the heavy-flavour decay electrons and the inclusive 
production cross section of electrons from semi-electronic de-
cays of beauty hadrons are compared to the predictions from 
three different pQCD calculations (FONLL [1], GM-VFNS [16], and 
kT-factorization [3]). The primary analysis presented here uses a 
track impact parameter discriminant, which takes advantage of the 
relatively long lifetime of beauty hadrons (cτ ∼500 µm) compared 
to charm hadrons. A second method discriminates beauty from 
charm production using the distribution of the azimuthal angle 
between heavy-flavour decay electrons and charged hadrons, $ϕ . 
For beauty hadron decays the width of the near-side peak, $ϕ
around zero, is indeed larger than that of charm hadron decays, 
due to the decay kinematics of the heavier mass beauty hadrons. 
The difference is exploited to measure the relative beauty contri-
bution to the heavy-flavour decay electron population, which can 
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be used along with the measured heavy-flavour electron spectrum 
to compute the production cross section of electrons from beauty 
hadron decays.

2. Event and track selection

The data set used for these analyses was recorded during the 
2011 LHC run with pp collisions at 

√
s = 2.76 TeV. The Minimum 

Bias (MB) collisions were triggered using the V0 scintillator detec-
tors, located in the forward (2.8 < η < 5.1) and backward (−3.7 <
η < −1.7) regions, and the Silicon Pixel Detector (SPD), which is 
the innermost part of the Inner Tracking System (ITS). The SPD 
consists of two cylindrical layers of hybrid silicon pixel assemblies, 
covering a pseudo-rapidity interval |η| < 2.0 and |η| < 1.4 for the 
inner and outer layer, respectively. Both the V0 and SPD detectors 
cover the full azimuth. The MB trigger required at least one hit in 
either of the V0 scintillator detectors or in the SPD, in coincidence 
with the presence of an LHC bunch crossing. Additional details can 
be found in [12]. The MB trigger cross section was measured to 
be 55.4 ± 1.0 mb using a van der Meer scan [17]. A fraction of 
MB events were triggered independently of the read-out state of 
the Silicon Drift Detector (SDD), which equips the two interme-
diate layers of the ITS. The Electromagnetic Calorimeter (EMCal) 
is a sampling calorimeter based on Shashlik technology, covering 
a pseudo-rapidity interval |η| < 0.7 and covering 100◦ in azimuth 
[18]. The EMCal Single Shower (SSh) trigger system generates a fast 
energy sum (800 ns) at Trigger Level 0 for overlapping groups of 
4 × 4 (η × ϕ) adjacent EMCal towers, followed by comparison to a 
threshold energy [19]. The data set recorded with the EMCal trig-
ger required that the MB trigger condition was fulfilled, and that 
at least one SSh sum exceeded a nominal threshold energy of 3.0 
GeV. The results reported are based on 51.5 million MB events (in-
tegrated luminosity of 0.9 nb−1) and 0.64 million EMCal triggered 
events (integrated luminosity of 14.9 nb−1). The impact parame-
ter analysis was performed solely on the MB sample. The method 
based on the distribution of the azimuthal angle between heavy-
flavour decay electrons and charged hadrons (i.e. electron–hadron 
correlation) was done using both the MB and EMCal trigger sam-
ples. In the offline analysis, events which satisfied the trigger con-
ditions were required to have a collision vertex with at least two 
tracks pointing to it and the vertex position along the beam line 
to be within ± 10 cm of the nominal centre of the ALICE detector.

Charged particle tracks were reconstructed offline using the 
Time Projection Chamber (TPC) [20] and the ITS [21]. To have a ho-
mogeneously reconstructed sample of tracks, the SDD points were 
always excluded from the track reconstruction used for these anal-
yses. EMCal clusters were generated offline via an algorithm that 
combines signals from adjacent EMCal towers. The cluster size was 
constrained by the requirement that each cluster contains only one 
local energy maximum. In the case of the EMCal-based analysis, 
charged tracks were propagated to the EMCal and matched to clus-
ters in the EMCal detector. The matching required the difference 
between the cluster position and track extrapolation at the EMCal 
surface to be smaller than 0.025 units in η and 0.05 radians in ϕ .

Electrons were identified using the TPC, Time of Flight (TOF), 
and EMCal detectors [13]. Background hadrons, in particular 
charged pions, were rejected using the specific energy loss, dE/dx, 
of charged particles measured in the TPC. Tracks were required to 
have a dE/dx value between one standard deviation below and 
three standard deviations above the expected value for electrons. 
In the low momentum region (below 2.0 GeV/c for the impact 
parameter analysis and below 2.5 GeV/c for the correlation anal-
ysis) electron candidates were required to be consistent within 
three standard deviations with the electron time of flight hypoth-
esis. TOF-based discrimination is not efficient at higher transverse 

Fig. 1. (Colour online.) (a) Transverse impact parameter (d0) distributions of elec-
trons from beauty and charm hadron decays, light hadron decays, and photon con-
versions obtained with PYTHIA 6 simulations in the electron pT range 1 < pT <

6 GeV/c, along with the measured distribution of conversion electrons. The distri-
butions are normalized to the same integrated yield. (b) Ratios of the measured and 
simulated d0 distributions of conversion electrons in the ranges 1 < pT < 6 GeV/c.

momentum and the TOF was not required. The EMCal-based cor-
relation analysis required E/p to be within a window of 0.8 and 
1.2 times the nominal value of E/p for electrons, where E is the 
energy deposited in the EMCal and p is the track momentum mea-
sured in the tracking system. Tracks were required to have hits in 
the SPD in order to suppress the contribution of electrons that 
originated from photon conversions in the inner tracking detector 
material and to improve the resolution on the track impact param-
eter.

3. Analysis

3.1. Impact parameter technique

The measured electron sample contains contributions from 
beauty and charm hadron decays, along with background sources. 
The background is primarily composed of electrons from photon 
conversions in the beam-pipe and ITS material, π0 and η Dalitz 
decays, and di-electron decays of light neutral vector mesons. The 
relative contribution of electrons from beauty hadron decays can 
be enhanced by selecting on the displacement of electron tracks 
from the primary vertex of the pp collision, as described in detail 
in [22].

The relatively long lifetime of beauty hadrons was exploited by 
selecting on the transverse impact parameter (d0), which is the 
projection of the charged track distance of closest approach to the 
primary vertex vector onto the transverse plane, perpendicular to 
the beam line. The sign of d0 is given according to the track posi-
tion relative to the primary vertex after the track has been spatially 
extended in the direction perpendicular to its pT vector. The reso-
lution of d0 is better than 85 µm for pT > 1 GeV/c. Fig. 1(a) shows 
the impact parameter distribution for all significant contributions 
to the measured electron sample in the range 1 < pT < 6 GeV/c. 
The distributions were obtained using a Monte Carlo (MC) simu-
lation with GEANT3 [23], where the pp collisions were produced 
using the PYTHIA 6 event generator (Perugia-0 tune) [24]. Each 
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Fig. 2. (Colour online.) Raw spectrum of electrons from the impact parameter anal-
ysis (open circles) compared to background sources (from charm hadron decays, 
photon conversions, Dalitz decays, and hadron contamination) as a function of pT. 
The background sources originating from light flavour hadrons were obtained using 
a MC simulation and reweighted according to the π0 pT spectrum measured with 
ALICE [25]. The charm hadron decay background was estimated using the charm 
hadron spectra measured with ALICE [26]. The raw yield after background sources 
are subtracted is also shown (filled circles). The error bars represent the statistical 
uncertainties.

source has a distinct d0 distribution. The d0 distribution of elec-
trons from Dalitz decays is relatively narrow compared to that 
from beauty hadron decays, since Dalitz electrons are effectively 
generated at the collision vertex. The charm hadron decay and con-
version electron d0 distributions are broader than that of the Dalitz 
decay distribution since they emerge from secondary vertices, but 
are not as broad as those from beauty decays. For comparison, the 
d0 distribution of conversion electrons from data is also shown in 
the figure. This pure sample of electrons from photon conversions 
in the detector material was identified using a V0-finder and an 
optimized set of topological selection requirements. Fig. 1(b) shows 
the ratio of the impact parameter distribution from data to that 
from simulation in the range 1 < pT < 6 GeV/c. The ratio is close 
to unity, showing good agreement of the simulation and measure-
ment of photon conversion electron candidates.

A selection on the transverse impact parameter d0 was ap-
plied in order to maximize the signal to background (S/B) ratio 
of electrons from beauty hadron decays. The requirement on the 
minimum impact parameter is pT dependent, since the width of 
the d0 distribution depends on pT. The S/B ratio varies with pT
due to different impact parameter selection efficiency for the var-
ious sources. Therefore, separate pT-dependent parameterizations 
of the d0 selection requirement were obtained for the analyses 
which utilize TPC-TOF and TPC-only for electron selection. Electron 
candidates accepted for the TPC-TOF analysis satisfied the condi-
tion |d0| > 64 + 480 · exp(−0.56pT) (with d0 in µm and pT in 
GeV/c), while |d0| > 54 + 780 · exp(−0.56pT) was required for the 
TPC-only analysis.

The raw pT distribution of electrons, after the application of 
track selection criteria, is shown in Fig. 2, along with the pT dis-
tributions of electrons from the various background sources (charm 
hadron decays, photon conversions, Dalitz/di-electron decays, and 
hadron contamination). The background distributions were ob-
tained from a MC simulation, with GEANT3. The pT distributions 
of the background sources were normalized to the total number of 
events which passed the event selection requirements, and were 
corrected for the efficiency to reconstruct a primary collision ver-
tex. Among all background contributions, Dalitz decay electrons 
and photon conversions are dominant at low pT, where more 
than 80% of the background can be attributed to π0 Dalitz de-

cays and conversions of photons from π0 decays. At high pT the 
contribution from charm hadron decays is significant. The con-
tribution from heavy quarkonia decays also becomes significant 
at high pT, although this contribution is strongly suppressed in 
the analysis since the selection on d0 strongly suppresses tracks 
from such decays. The PYTHIA simulation does not precisely repro-
duce the pT-differential spectra of background sources measured 
in data. Therefore, the sources of background electrons simulated 
with PYTHIA were reweighted according to the π0 pT spectrum 
measured with ALICE [25] and were then propagated in the ALICE 
apparatus using GEANT3. The spectra of other light mesons were 
estimated via mT-scaling of the π0 spectrum. The electron back-
ground from charm hadron decays was estimated based on the 
charm hadron spectra measured with ALICE. The D meson produc-
tion cross sections were obtained by applying a 

√
s scaling to the 

cross sections measured at 
√

s = 7 TeV [26]. The scaling factor was 
defined as the ratio of the cross sections from the FONLL calcula-
tions at 2.76 and 7 TeV. The theoretical uncertainty on the scaling 
factor was evaluated by varying quark mass and the perturbative 
scales as described in [27]. The D meson production cross sections 
were measured with ALICE, with limited precision and pT cover-
age, in pp collisions at 

√
s = 2.76 TeV [12]. These measurements 

were found to be in agreement with the scaled 7 TeV measure-
ments within statistical uncertainties. A contribution from Λc de-
cays was included using the measured ratio σ (Λc)/σ (D0 + D+)
from ZEUS [28]. The background electrons surviving the selection 
criteria, including the condition on d0, were subtracted from the 
measured electron distribution. Hadron contamination was esti-
mated using a simultaneous fit of the electron and the different 
hadron components of the TPC dE/dx distribution in momentum 
slices. The contamination was negligible below 4 GeV/c but is sig-
nificant at higher momenta. At 8 GeV/c it was found to be approx-
imately 7%. The contamination was statistically subtracted from 
the measured electron distribution. The resulting pT distribution 
is shown as filled circles in Fig. 2.

The electron yield from beauty hadron decays was corrected 
for geometrical acceptance, track reconstruction efficiency, electron 
identification efficiency, and efficiency of the d0 cut. The invariant 
cross section of inclusive electron production from beauty hadron 
decays in the range |y| < 0.8 was then calculated using the cor-
rected electron pT spectrum, the number of MB pp collisions and 
the MB cross section. The details are described in [22].

To evaluate systematic uncertainties, the analysis was repeated 
with modified track selection and Particle IDentification (PID) cri-
teria. The contributions to the systematic uncertainty are listed in 
Table 1. The systematic uncertainties due to the tracking efficien-
cies and PID efficiencies are +15

−18(± 15)% for pT < 2 GeV/c (2 < pT <

6 GeV/c). These reach ≈+20
−40% at 8 GeV/c due to the uncertainty of 

the hadron contamination subtraction, which is ≈+8
−30% at 8 GeV/c. 

Additional contributions to the total systematic uncertainty include 
the d0 selection, evaluated by repeating the full analysis with mod-
ified selection criteria, and the subtraction of light flavor hadron 
decay background and charm hadron decay background, which 
were obtained by propagating the statistical and systematic uncer-
tainties of the light flavor and charm hadron measurements used 
as analysis input. The light hadron decay background systematic 
uncertainty includes the uncertainty of the mT-scaling, which is 
conservatively taken to be 30%. All systematic uncertainties were 
added in quadrature to obtain the total systematic uncertainty.

3.2. Azimuthal electron–hadron correlation technique

This analysis is based on the shape of the distribution of the 
difference in azimuth ($ϕ) between electrons and hadrons, and in 
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Table 1
Contributions to the systematic uncertainty of the measurement of electrons from beauty hadron decays with the impact parameter 
method, for the ranges 1 < pT < 2 GeV/c (centre column) and 2 < pT < 8 GeV/c (right column). The total systematic uncertainty is 
calculated as the quadrature sum of all contributions.

Uncertainty source Systematic uncertainty (%) 
1 < pT < 2 GeV/c

2 < pT < 8 GeV/c

Track matching ± 2 ± 2
ITS number of hits ± 10 ± 10
Number of TPC clusters for tracking +1, −10 ± 1
Number of TPC clusters for PID ± 3 ± 3
TOF PID ± 3 n.a.
TPC PID ± 10 ± 10
Track η and charge dependence ± 2 ± 2
Minimum d0 requirement +15, −25 ± 15
Light hadron decay background ≈15 <3
Charm hadron decay background +40, −60 <10

Fig. 3. (Colour online.) The azimuthal correlation between heavy-flavour decay elec-
trons and charged hadrons, scaled by the number of electrons is shown for (a) the 
MB events in the pe

T range 1.5 to 2.5 GeV/c and (b) the EMCal events in the 
pe

T range 4.5 to 6.0 GeV/c. The diamonds represent the MC distribution for elec-
trons from charm hadron decays, squares are the MC distribution for electrons from 
beauty hadron decays. The line is the MC fit (Eq. (2)) to the data points (circles).

particular of the peak at $ϕ around zero (near-side). Due to the 
different decay kinematics of charm and beauty hadrons, the width 
of the near-side peak is larger for beauty than for charm hadron 
decays. This method has been previously used by the STAR exper-
iment [29]. A similar method based on the invariant mass of like 
charge sign electron–kaon pairs [30] was used by the PHENIX ex-
periment to extract a relative beauty contribution to the measured 
heavy-flavour electron production cross section.

The analysis was performed using the MB and EMCal trigger 
data sets. Electrons were selected in the range 1 < pT < 10 GeV/c. 
For the MB analysis the selected electrons reached out to a trans-
verse momentum of 6 GeV/c, while the analysis using EMCal trig-
gered events selects electrons in the range 2.5 < pT < 10 GeV/c.

The electron sample (Neincl ) contains electrons from heavy-
flavour hadron decays and the aforementioned background sources, 
listed in Section 3.1. Di-electron pairs from photon conversions and 
π0 Dalitz decays dominate at low pT and were identified by pair-
ing electrons with oppositely charged partner tracks and calculat-
ing the invariant mass (Me+e−) of each e+e− pair. The distribution 

for the background electrons is peaked at low Me+e−, while no cor-
relation signal is present in the low Me+e− region for the electrons 
from heavy-flavour decays. These unlike charge-sign (ULS) pairs 
contain true conversion and Dalitz decay electrons, along with a 
small fraction of heavy-flavour electrons that were wrongly paired 
with a background electron. The latter can be identified by calcu-
lating the invariant mass of like charge-sign (LS) pairs. Using a MC 
simulation with GEANT3, where pp collisions are generated us-
ing PYTHIA 6 (Perugia-0 tune) and by comparing the ULS and LS 
invariant mass distribution the selection criteria on Me+e−, iden-
tical for the LS and ULS pairs, were determined. Electrons with 
Me+e− < 50(100) MeV/c2 for the EMCal(MB) analysis were iden-
tified as background. The background finding efficiency (ϵ) ranges 
from ∼20% at low pT to ∼66% for pT above 4 GeV/c.

The number of heavy-flavour hadron decay electrons can be ex-
pressed as

NeHF = Neincl −1
ϵ

(NeULS −NeLS), (1)

where NeULS (NeLS ) are the number of electrons which formed a 
ULS(LS) pair with a Me+e− satisfying the previously mentioned se-
lection criteria. Each electron contribution from Eq. (1) is taken, 
along with the charged hadrons in the event and the heavy-
flavour decay electron–hadron azimuthal correlation distribution, 

1
Ne

( dN
d$ϕ )eHF−h, was constructed.

To determine the fraction of electrons from beauty hadron de-
cays the measured azimuthal e–h correlation distribution was fit 
with the function

1
NeHF

(
dN

d$ϕ

)

eHF−h

= C + rb
1

Neb

(
dN

d$ϕ

)

eb−h
+ (1 −rb)

1
Nec

(
dN

d$ϕ

)

ec−h
, (2)

where rb, a free parameter of the fit, is the fraction of electrons 
from beauty to the total number of electrons from all heavy-flavour 
decays, $ϕ is the azimuthal angle between the electron and the 
charged hadron. The distributions of the azimuthal correlations 
( dN

d$ϕ )eb(c)−h for electrons from beauty (charm) hadron decays were 
taken from the previously mentioned MC simulation, and the con-
stant C accounts for the uncorrelated background. Fig. 3 shows 
the measured azimuthal correlation, scaled by the number of elec-
trons, along with the MC fit templates and the full fit for both 
(a) the MB and (b) the EMCal trigger analyses, in the pT range 
of 1.5–2.5 GeV/c and 4.5–6 GeV/c, respectively. For each pT bin 
the measured distribution was fit on the near-side, over the range 
|$ϕ| < 1.5 rad. From the fit, the relative beauty fraction (rb) is ex-
tracted as a function of pT. The values of rb obtained from the 
MB and EMCal triggered samples were found to agree within the 
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Table 2
Contributions to the systematic uncertainty of the fraction of electrons from beauty to the total number of electrons from heavy-flavour decays mea-
sured using the e–h azimuthal correlation technique, for the MB trigger (centre column) and EMCal trigger (right column) analyses. The total systematic 
uncertainty is calculated as the quadrature sum of all contributions.

Uncertainty source Systematic uncertainty (%) MB EMCal

Number of TPC clusters for tracking ± 8 5
TPC PID ± 5 (+5,−20) for pT < (>)3.5 GeV/c ± 5 (± 10) for pT < (>)3.5 GeV/c
TOF PID ± 5 n.a.
EMCal PID n.a. ± 10 (± 5) for pT < (>)3.5 GeV/c
e+e− invariant mass negligible ± 10 (± 5) for pT < (>)3.5 GeV/c
Associated electron PID ± 1 ± 1 (± 5) for pT < (>)4.5 GeV/c
Associated hadron momentum ± 8 ± 10 (± 5) for pT < (>)3.5 GeV/c
Fit range negligible negligible (± 5) for pT < (> 6) GeV/c
Light hadron decay background ± 1 ± 25 (± 5) for pT < (>)3.5 GeV/c

systematic and statistical uncertainties in the overlapping pT in-
tervals. Hence, in the common pT range, the final results for the 
relative beauty contribution to heavy-flavour decay electrons was 
obtained as the weighted average of the results from the MB and 
EMCal samples.

The main sources of systematic uncertainty include the elec-
tron identification selection criteria and the background finding 
efficiency. As previously explained, the background electrons were 
identified using invariant mass Me+e−. The selected mass require-
ment, as a source of systematic uncertainty was found to be neg-
ligible for the MB analysis and reached a maximum of 10% for 
pT < 3.5 GeV for the EMCal analysis. The efficiency of the invari-
ant mass method was calculated using a MC sample. For the EMCal 
analysis a MC simulation enhanced with π0 and η mesons, flat in 
pT, was used in order to increase statistics of background electrons 
at high pT, as the MB MC sample did not provide enough statis-
tics. The bias from the enhancement is corrected by reweighting 
to obtain the correct pT-distribution of the π0 (see Section 3.1). 
Overall, the systematic uncertainties range from 9 to 21% for the 
MB analysis and from 12 to 33% in the case of the EMCal analysis, 
depending on the transverse momentum. The final systematic un-
certainties were obtained by combining these two measurements, 
yielding 17% for the lower momentum region (pT < 3.5 GeV/c) 
and +16

−25% for the higher momentum region (3.5 < pT < 10 GeV/c). 
All systematic uncertainties are listed in Table 2.

For the MB analysis the hadron contamination to the electron 
sample was estimated using a simultaneous fit of the electron and 
the different hadron components of the TPC dE/dx distribution 
in momentum ranges, while for the EMCal analysis the contami-
nation was estimated using a fit to the E/p distribution in mo-
mentum slices. The contamination was found to be negligible for 
pT < 4(6) GeV/c for the MB(EMCal) analysis. For the highest pT of 
the MB analysis the contamination was 5% and reached 20% for 
the highest pT of the EMCal analysis. No subtraction of this con-
tamination was performed. Instead it is taken into account in the 
PID systematic uncertainties. In addition, a mixed event technique 
was used to cross-check that detector acceptance effects are well 
reproduced in the MC sample. For the mixed event $ϕ correlation 
distribution, electrons from EMCal trigger events and hadrons from 
the MB sample were selected. Hadrons were selected only from MB 
events to remove the bias from EMCal trigger sample in the corre-
lation distribution from mixed event. The mixed event correlation 
distribution was found to be flat over the entire $ϕ range, imply-
ing that detector effects do not bias the correlation distribution. 
Hence a mixed event correction was not applied to the resulting 
$ϕ distribution.

4. Results

The relative beauty contribution to heavy-flavour decay elec-
trons obtained from the impact parameter analysis, along with 

Fig. 4. (Colour online.) (a) Relative beauty contribution to the heavy-flavour electron 
yield; measured from the azimuthal correlations between heavy-flavour decay elec-
trons and charged hadrons (black circles) compared to that from the method based 
on the track impact parameter (red squares). The green dashed, red dotted, and blue 
dot-dashed lines represent the FONLL [1], kT-factorization [3], and GM-VFNS [16]
predictions, respectively. (b) The pT-differential inclusive production cross section of 
electrons from beauty hadron decays obtained using the impact parameter method 
(red squares) and the e–h correlation (black circles) method. For both panels, the 
error bars (boxes) represent the statistical (systematic) uncertainties. The notation 
b(→ c) → e is used to indicate that the relative beauty contribution includes those 
electrons which originate directly from beauty hadron decays and those which orig-
inate from charm hadron decays, where the charm hadron is the decay product of 
a beauty hadron.

that extracted from the azimuthal correlation method, is shown 
as a function of pT in Fig. 4(a). For the impact parameter analy-
sis the beauty contribution to the heavy-flavour electron spectrum 
was measured, while the charm contribution was calculated from 
the charm hadron spectra measured by ALICE as described in Sec-
tion 3.1. Within the statistical and systematic uncertainties the 
resulting fractions are in agreement with each other and show 
that the beauty contribution to the total heavy-flavour spectrum 
is comparable to the contribution from charm for pT > 4 GeV/c.

The measurements are compared to the central, upper, and 
lower predictions of three sets of pQCD calculations [1,16,3], rep-
resented by the various lines. The central values of the fraction 
of electrons from beauty hadron decays were calculated using the 
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Fig. 5. (Colour online.) (a) pT-differential inclusive production cross section of elec-
trons from beauty hadron decays. The green dashed, red dotted, and blue dot-
dashed lines represent the FONLL [1], kT-factorization [3], and GM-VFNS [16] un-
certainty range, respectively. (b)–(d) Ratios of the data and the central prediction of 
pQCD calculations for electrons from beauty hadron decays. For all panels, the error 
bars (boxes) represent the statistical (systematic) uncertainties.

central values of the beauty and charm to electron cross sections. 
The upper (lower) predictions were obtained by calculating the 
beauty fraction using the upper (lower) uncertainty limit of the 
beauty to electron cross section and the lower (upper) limit of the 
charm to electron cross section. The upper and lower lines demon-
strate the uncertainty range of the calculations, which originate 
from the variation of the perturbative scales and the heavy quark 
masses as described in [1–3]. Each prediction describes the relative 
beauty contribution fraction over the whole pT range.

The pT-differential production cross section of electrons from 
beauty hadron decays measured using the impact parameter anal-
ysis is shown in Fig. 4(b) and it is compared to the spectrum ob-
tained using the beauty fraction from the e–h correlation analysis 
and the measured heavy-flavour decay electron cross section from 
[13]. This alternative approach agrees with the result obtained us-
ing the impact parameter technique. As the resulting spectrum 
obtained using the impact parameter based analysis (|y| < 0.8) 
yielded finer pT intervals and smaller uncertainties this result for 
pT < 8 GeV/c is used with the higher pT slice of the e–h correla-
tion analysis (|y| < 0.7) to obtain the total beauty production cross 
section.

The measured pT-differential cross section, obtained using the 
impact parameter analysis for pT < 8 GeV/c and including the 
highest pT point from the correlation analysis, in the pT range 
1–10 GeV/c is shown in Fig. 5(a) along with a comparison to the 
upper and lower uncertainty limits of the aforementioned pQCD 
calculations. Fig. 5(b)–(d) shows the ratio of the data to the cen-
tral theoretical predictions. The data and predictions are consistent 
within the experimental and theoretical uncertainties. Due to the 
uncertainty of the measured luminosity all measured cross sec-
tions have an additional normalization uncertainty of 1.9% [17].

The visible cross section of electrons from beauty hadron 
decays at mid-rapidity (|y| < 0.8) was obtained by integrating 

Fig. 6. (Colour online.) Inclusive beauty production cross section per rapidity unit 
measured at mid-rapidity as a function of centre of mass energy in pp collisions 
(PHENIX [30] and ALICE [22] results) and pp̄ collisions (UA1 [31] and CDF [32] re-
sults) along with the comparison to FONLL calculations. Error bars represent the 
statistical and systematic uncertainties added in quadrature. The FONLL calculation 
was performed for the five experimental rapidity ranges and centre of mass ener-
gies shown in the figure, and these points are drawn as a curve.

the pT-differential cross section in the measured pT range (1 <
pT < 10 GeV/c), obtaining σb→e = 3.47 ± 0.40(stat)+1.12

−1.33(sys) ±
0.07(norm) µb. The visible cross section is then scaled by the ra-
tio of the total cross section of electrons originating from beauty 
hadron decays from FONLL in the full pT range to the FONLL 
cross section integrated in the measured pT range. The central 
value of the extrapolation factor was computed using the FONLL 
prediction with the central values of the quark mass and pertur-
bative scale. The uncertainties were obtained by varying the quark 
mass and perturbative scale and recalculating the ratio, which is 
given separately in the results as extrapolation uncertainty. For 
the extrapolation the beauty hadron to electron branching ratio of 
BRHb→e + BRHb→Hc→e = 0.205 ± 0.007 [33] is used.

The beauty production cross section at mid-rapidity, per unit 
rapidity, dσbb̄

dy = 23.28 ± 2.70(stat)+8.92
−8.70(sys)+0.49

−0.65(extr) ±
0.44(norm) µb, is shown in Fig. 6 as a function of centre of mass 
energy for experimental measurements [30,32,31], including the 
result obtained by ALICE at 7 TeV [22]. The total beauty produc-
tion cross section was obtained by extrapolating to the full y range 
and is found to be σbb̄ = 130 ± 15.1(stat)+42.1

−49.8(sys)+3.4
−3.1(extr) ±

2.5(norm) ± 4.4(BR) µb. The corresponding prediction of FONLL 
is σbb̄ = 95.5+139

−66.5 µb.

5. Summary

The inclusive invariant production cross section of electrons 
from semi-leptonic decays of beauty hadrons is reported at mid-
rapidity (|y| < 0.8) in the transverse momentum range 1 < pT <
10 GeV/c, in pp collisions at 

√
s = 2.76 TeV. The primary measure-

ment utilized a selection of tracks based on their impact parameter 
to identify displaced electrons from beauty hadron decays. An al-
ternative method, which utilized the measured electron–hadron 
azimuthal correlations, was found to be in agreement with the re-
sults from the impact parameter method. The results are compared 
to pQCD calculations and agreement between data and theory 
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was found. The integrated visible cross section is σb→e = 3.47 ±
0.40(stat)+1.12

−1.33(sys) ± 0.07(norm) µb. Extrapolation to full phase 
space using FONLL yields the total bb̄ production cross section, 
σbb̄ = 130 ± 15.1(stat)+42.1

−49.8(sys)+3.4
−3.1(extr) ± 2.5(norm) ± 4.4(BR) µb. 

These results provide a crucial reference for the study of beauty 
quark production in Pb–Pb collisions at the LHC.
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J. Lien dw, R. Lietava ct, S. Lindal u, V. Lindenstruth am, C. Lippmann co, M.A. Lisa s, H.M. Ljunggren af, 
D.F. Lodato ba, P.I. Loenne q, V.R. Loggins dy, V. Loginov bt, D. Lohner ck, C. Loizides br, X. Lopez bn, 
E. López Torres i, X.-G. Lu ck, P. Luettig aw, M. Lunardon ab, G. Luparello ba,x, R. Ma ea, A. Maevskaya az, 
M. Mager ah, D.P. Mahapatra be, S.M. Mahmood u, A. Maire ck,ay, R.D. Majka ea, M. Malaev cc, 
I. Maldonado Cervantes bg, L. Malinina bj,4, D. Mal’Kevich bb, P. Malzacher co, A. Mamonov cq, 
L. Manceau dc, V. Manko cr, F. Manso bn, V. Manzari cv, M. Marchisone bn,y, J. Mareš bd, G.V. Margagliotti x, 
A. Margotti cw, A. Marín co, C. Markert di, M. Marquard aw, I. Martashvili dp, N.A. Martin co, 
P. Martinengo ah, M.I. Martínez b, G. Martínez García de, J. Martin Blanco de, Y. Martynov c, A. Mas de, 
S. Masciocchi co, M. Masera y, A. Masoni cx, L. Massacrier de, A. Mastroserio ae, A. Matyja dh, C. Mayer dh, 
J. Mazer dp, M.A. Mazzoni da, F. Meddi v, A. Menchaca-Rocha bh, J. Mercado Pérez ck, M. Meres aj, 
Y. Miake dr, K. Mikhaylov bj,bb, L. Milano ah, J. Milosevic u,5, A. Mischke ba, A.N. Mishra as, D. Miśkowiec co, 
J. Mitra dv, C.M. Mitu bf, J. Mlynarz dy, N. Mohammadi ba, B. Mohanty bw,dv, L. Molnar ay, 
L. Montaño Zetina k, E. Montes j, M. Morando ab, D.A. Moreira De Godoy dk, S. Moretto ab, A. Morreale de, 
A. Morsch ah, V. Muccifora bp, E. Mudnic dg, D. Mühlheim ax, S. Muhuri dv, M. Mukherjee dv, H. Müller ah, 
M.G. Munhoz dk, S. Murray cg, L. Musa ah, J. Musinsky bc, B.K. Nandi ar, R. Nania cw, E. Nappi cv, 
C. Nattrass dp, K. Nayak bw, T.K. Nayak dv, S. Nazarenko cq, A. Nedosekin bb, M. Nicassio co, 
M. Niculescu ah,bf, B.S. Nielsen bx, S. Nikolaev cr, S. Nikulin cr, V. Nikulin cc, B.S. Nilsen cd, F. Noferini l,cw, 
P. Nomokonov bj, G. Nooren ba, J. Norman do, A. Nyanin cr, J. Nystrand q, H. Oeschler ck, S. Oh ea, 
S.K. Oh bk,an,6, A. Okatan bm, L. Olah dz, J. Oleniacz dx, A.C. Oliveira Da Silva dk, J. Onderwaater co, 
C. Oppedisano dc, A. Ortiz Velasquez bg,af, A. Oskarsson af, J. Otwinowski dh,co, K. Oyama ck, M. Ozdemir aw, 
P. Sahoo as, Y. Pachmayer ck, M. Pachr ak, P. Pagano ac, G. Paić bg, F. Painke am, C. Pajares p, S.K. Pal dv, 
A. Palmeri cy, D. Pant ar, V. Papikyan a, G.S. Pappalardo cy, P. Pareek as, W.J. Park co, S. Parmar ce, 
A. Passfeld ax, D.I. Patalakha dd, V. Paticchio cv, B. Paul cs, T. Pawlak dx, T. Peitzmann ba, 
H. Pereira Da Costa n, E. Pereira De Oliveira Filho dk, D. Peresunko cr, C.E. Pérez Lara by, A. Pesci cw, 
V. Peskov aw, Y. Pestov e, V. Petráček ak, M. Petran ak, M. Petris bv, M. Petrovici bv, C. Petta aa, S. Piano db, 
M. Pikna aj, P. Pillot de, O. Pinazza cw,ah, L. Pinsky dm, D.B. Piyarathna dm, M. Płoskoń br, M. Planinic ds,cp, 
J. Pluta dx, S. Pochybova dz, P.L.M. Podesta-Lerma dj, M.G. Poghosyan cd,ah, E.H.O. Pohjoisaho ap, 
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B. Polichtchouk dd, N. Poljak cp,ds, A. Pop bv, S. Porteboeuf-Houssais bn, J. Porter br, B. Potukuchi ch, 
S.K. Prasad dy,d, R. Preghenella cw,l, F. Prino dc, C.A. Pruneau dy, I. Pshenichnov az, G. Puddu w, 
P. Pujahari dy, V. Punin cq, J. Putschke dy, H. Qvigstad u, A. Rachevski db, S. Raha d, J. Rak dn, 
A. Rakotozafindrabe n, L. Ramello ad, R. Raniwala ci, S. Raniwala ci, S.S. Räsänen ap, B.T. Rascanu aw, 
D. Rathee ce, A.W. Rauf o, V. Razazi w, K.F. Read dp, J.S. Real bo, K. Redlich bu,7, R.J. Reed dy,ea, A. Rehman q, 
P. Reichelt aw, M. Reicher ba, F. Reidt ah, R. Renfordt aw, A.R. Reolon bp, A. Reshetin az, F. Rettig am, 
J.-P. Revol ah, K. Reygers ck, V. Riabov cc, R.A. Ricci bq, T. Richert af, M. Richter u, P. Riedler ah, W. Riegler ah, 
F. Riggi aa, A. Rivetti dc, E. Rocco ba, M. Rodríguez Cahuantzi b, A. Rodriguez Manso by, K. Røed u, 
E. Rogochaya bj, S. Rohni ch, D. Rohr am, D. Röhrich q, R. Romita bz,do, F. Ronchetti bp, L. Ronflette de, 
P. Rosnet bn, A. Rossi ah, F. Roukoutakis cf, A. Roy as, C. Roy ay, P. Roy cs, A.J. Rubio Montero j, R. Rui x, 
R. Russo y, E. Ryabinkin cr, Y. Ryabov cc, A. Rybicki dh, S. Sadovsky dd, K. Šafařík ah, B. Sahlmuller aw, 
R. Sahoo as, P.K. Sahu be, J. Saini dv, S. Sakai bp,br, C.A. Salgado p, J. Salzwedel s, S. Sambyal ch, 
V. Samsonov cc, X. Sanchez Castro ay, F.J. Sánchez Rodríguez dj, L. Šándor bc, A. Sandoval bh, M. Sano dr, 
G. Santagati aa, D. Sarkar dv, E. Scapparone cw, F. Scarlassara ab, R.P. Scharenberg cm, C. Schiaua bv, 
R. Schicker ck, C. Schmidt co, H.R. Schmidt ag, S. Schuchmann aw, J. Schukraft ah, M. Schulc ak, T. Schuster ea, 
Y. Schutz de,ah, K. Schwarz co, K. Schweda co, G. Scioli z, E. Scomparin dc, R. Scott dp, G. Segato ab, 
J.E. Seger cd, Y. Sekiguchi dq, I. Selyuzhenkov co, J. Seo cn, E. Serradilla j,bh, A. Sevcenco bf, A. Shabetai de, 
G. Shabratova bj, R. Shahoyan ah, A. Shangaraev dd, N. Sharma dp, S. Sharma ch, K. Shigaki aq, K. Shtejer y,i, 
Y. Sibiriak cr, S. Siddhanta cx, T. Siemiarczuk bu, D. Silvermyr cb, C. Silvestre bo, G. Simatovic ds, 
R. Singaraju dv, R. Singh ch, S. Singha dv,bw, V. Singhal dv, B.C. Sinha dv, T. Sinha cs, B. Sitar aj, M. Sitta ad, 
T.B. Skaali u, K. Skjerdal q, M. Slupecki dn, N. Smirnov ea, R.J.M. Snellings ba, C. Søgaard af, R. Soltz bs, 
J. Song cn, M. Song eb, F. Soramel ab, S. Sorensen dp, M. Spacek ak, E. Spiriti bp, I. Sputowska dh, 
M. Spyropoulou-Stassinaki cf, B.K. Srivastava cm, J. Stachel ck, I. Stan bf, G. Stefanek bu, M. Steinpreis s, 
E. Stenlund af, G. Steyn bi, J.H. Stiller ck, D. Stocco de, M. Stolpovskiy dd, P. Strmen aj, A.A.P. Suaide dk, 
T. Sugitate aq, C. Suire au, M. Suleymanov o, R. Sultanov bb, M. Šumbera ca, T. Susa cp, T.J.M. Symons br, 
A. Szabo aj, A. Szanto de Toledo dk, I. Szarka aj, A. Szczepankiewicz ah, M. Szymanski dx, J. Takahashi dl, 
M.A. Tangaro ae, J.D. Tapia Takaki au,8, A. Tarantola Peloni aw, A. Tarazona Martinez ah, M.G. Tarzila bv, 
A. Tauro ah, G. Tejeda Muñoz b, A. Telesca ah, C. Terrevoli w, J. Thäder co, D. Thomas ba, R. Tieulent dt, 
A.R. Timmins dm, A. Toia aw,cz, V. Trubnikov c, W.H. Trzaska dn, T. Tsuji dq, A. Tumkin cq, R. Turrisi cz, 
T.S. Tveter u, K. Ullaland q, A. Uras dt, G.L. Usai w, M. Vajzer ca, M. Vala bc,bj, L. Valencia Palomo bn, 
S. Vallero y,ck, P. Vande Vyvre ah, J. Van Der Maarel ba, J.W. Van Hoorne ah, M. van Leeuwen ba, A. Vargas b, 
M. Vargyas dn, R. Varma ar, M. Vasileiou cf, A. Vasiliev cr, V. Vechernin du, M. Veldhoen ba, A. Velure q, 
M. Venaruzzo x,bq, E. Vercellin y, S. Vergara Limón b, R. Vernet h, M. Verweij dy, L. Vickovic dg, G. Viesti ab, 
J. Viinikainen dn, Z. Vilakazi bi, O. Villalobos Baillie ct, A. Vinogradov cr, L. Vinogradov du, Y. Vinogradov cq, 
T. Virgili ac, Y.P. Viyogi dv, A. Vodopyanov bj, M.A. Völkl ck, K. Voloshin bb, S.A. Voloshin dy, G. Volpe ah, 
B. von Haller ah, I. Vorobyev du, D. Vranic co,ah, J. Vrláková al, B. Vulpescu bn, A. Vyushin cq, B. Wagner q, 
J. Wagner co, V. Wagner ak, M. Wang g,de, Y. Wang ck, D. Watanabe dr, M. Weber ah,dm, J.P. Wessels ax, 
U. Westerhoff ax, J. Wiechula ag, J. Wikne u, M. Wilde ax, G. Wilk bu, J. Wilkinson ck, M.C.S. Williams cw, 
B. Windelband ck, M. Winn ck, C.G. Yaldo dy, Y. Yamaguchi dq, H. Yang ba, P. Yang g, S. Yang q, S. Yano aq, 
S. Yasnopolskiy cr, J. Yi cn, Z. Yin g, I.-K. Yoo cn, I. Yushmanov cr, V. Zaccolo bx, C. Zach ak, A. Zaman o, 
C. Zampolli cw, S. Zaporozhets bj, A. Zarochentsev du, P. Závada bd, N. Zaviyalov cq, H. Zbroszczyk dx, 
I.S. Zgura bf, M. Zhalov cc, H. Zhang g, X. Zhang g,br, Y. Zhang g, C. Zhao u, N. Zhigareva bb, D. Zhou g, 
F. Zhou g, Y. Zhou ba, Zhuo Zhou q, H. Zhu g, J. Zhu g, X. Zhu g, A. Zichichi l,z, A. Zimmermann ck, 
M.B. Zimmermann ax,ah, G. Zinovjev c, Y. Zoccarato dt, M. Zyzak aw
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