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The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding 
initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their 
dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), 
can also have a significant contribution from lower order initial anisotropy coefficients, which leads 
to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher 
order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The 
measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum 
range 0.2 < pT < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical 
calculations and provide important constraints on the initial conditions, including initial spatial geometry 
and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The primary goal of the ultra-relativistic heavy-ion collision 
programme at the Large Hadron Collider (LHC) is to study the 
properties of the Quark–Gluon Plasma (QGP), a novel state of 
strongly interacting matter that is proposed to exist at high tem-
peratures and energy densities [1,2]. Studies of azimuthal corre-
lations of produced particles have contributed significantly to the 
characterisation of the matter created in heavy-ion collisions [3,
4]. Anisotropic flow, which quantifies the anisotropy of the mo-
mentum distribution of final state particles, is sensitive to the 
event-by-event fluctuating initial geometry of the overlap region, 
together with the transport properties and equation of state of the 
system [4–7]. The successful description of anisotropic flow results 
by hydrodynamic calculations suggests that the created medium 
behaves as a nearly perfect fluid [4,5] with a shear viscosity to 
entropy density ratio, η/s, close to a conjectured lower bound 
1/4π [8]. Anisotropic flow is characterised using a Fourier decom-
position of the particle azimuthal distribution in the plane trans-
verse to the beam direction [9,10]:

dN
dϕ

∝ 1 + 2
∞∑

n=1

vn cos[n(ϕ −&n)], (1)

where N is the number of produced particles, ϕ is the azimuthal 
angle of the particle and &n is the nth order flow symmetry plane. 

⋆ E-mail address: alice-publications@cern.ch.

The nth order (complex) anisotropic flow Vn is defined as: Vn ≡
vn ein&n , where vn = |Vn| is the flow coefficient, and &n represents 
the azimuth of Vn in momentum space. For non-central heavy-ion 
collisions, the dominant flow coefficient is v2, referred to as elliptic 
flow. Non-vanishing values of higher flow coefficients v3–v6 at the 
LHC are ascribed primarily to the response of the produced QGP 
to fluctuations of the initial energy density profile of the colliding 
nucleons [11–15].

The standard (moment-defined) initial anisotropy coefficients 
εn together with their corresponding initial symmetry planes (also 
called participant planes) 'n can be calculated from the transverse 
positions (r, φ) of the participating nucleons

εnein'n ≡ −
〈
rneinφ

〉

⟨rn⟩ (for n > 1), (2)

where ⟨ ⟩ denotes the average over the transverse position of all 
participating nucleons, φ is azimuthal angle, and n is the order 
of the coefficient [11,16]. It has been shown in [17,18] that V 2
and V 3 are mostly determined with the same order initial spa-
tial anisotropy coefficients ε2 and ε3, respectively. Considering that 
η/s reduces the hydrodynamic response of vn to εn , it was pro-
posed in [18–21] that vn/εn (for n = 2, 3) could be a direct probe 
to quantitatively constrain the η/s of the QGP in hydrodynamic 
calculations. However, εn cannot be determined experimentally. In-
stead, they are obtained from various theoretical models, resulting 
in large uncertainties in the estimated η/s derived indirectly from 
v2 and v3 measurements [17,19]. On the other hand, higher order 
anisotropic flow Vn with n > 3 probe smaller spatial scales and 
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thus are more sensitive to η/s than V 2 and V 3 due to more pro-
nounced viscous corrections [16,22]. Thus, the study of the full set 
of flow coefficients is expected to constrain both εn and η/s si-
multaneously. However, it was realised later that Vn with n > 3 is 
not linearly correlated with the corresponding εn [16,22,23], which 
makes the extraction of η/s from measurements of higher order 
flow coefficients less straightforward. In addition to the study of 
flow coefficients, the results of correlations between different or-
der anisotropic flow angles and amplitudes shed light on both 
the early stage dynamics and the transport properties of the cre-
ated QGP [24–32]. In particular, the characteristic pattern of flow 
symmetry plane correlations (also known as angular correlations 
of flow-vectors) observed in experiments is reproduced quantita-
tively by theoretical calculations [29–33]. However, the correlations 
between flow coefficients (also known as amplitude correlations 
of flow-vectors), investigated using symmetric cumulants, provide 
stricter constraints on initial conditions and η/s than the individ-
ual vn measurements [24–28,31,32]. It is a challenge for current 
theoretical models to provide quantitative descriptions of the cor-
relations between different order flow coefficients.

As discussed above, it is known that the lower order anisotropic 
flow Vn (n = 2, 3) is largely determined by a linear response of the 
system to the corresponding εn (except in peripheral collisions). 
Higher order anisotropic flow Vn with n > 3 have contributions 
not only from the linear response of the system to εn , but also con-
tributions proportional to the product of ε2 and/or ε3. These con-
tributions are usually called non-linear response [25,34] in higher 
order anisotropic flow. For a single event, Vn with n = 4, 5 and 
6 can be decomposed into the so-called linear and the non-linear 
contributions, according to

V 4 = V NL
4 + V L

4 = χ4,22(V 2)
2 + V L

4, (3)

V 5 = V NL
5 + V L

5 = χ5,32 V 2 V 3 + V L
5, (4)

V 6 = V NL
6 + V L

6

= χ6,222(V 2)
3 + χ6,33(V 3)

2 + χ6,42 V 2 V L
4 + V L

6. (5)

Here χn,mk is a new observable called the non-linear mode co-
efficient [34] and V NL

n represents the non-linear mode which has 
contributions from modes with lower order anisotropy coefficients. 
The V L

n term represents the linear mode, which was naïvely ex-
pected from the linear response of the system to the same or-
der εn . However, a recent hydrodynamic calculation showed that 
V L

n is not driven by the linear response to the standardly moment-
defined εn introduced in Eq. (2), but the corresponding cumulant-
defined anisotropy coefficient ε′

n [30,35]. For example, V L
4 is ex-

pected to be driven by the 4th-order cumulant-defined anisotropy 
coefficient and its corresponding initial symmetry plane which can 
be calculated as

ε′
4ei4'′

4 ≡ −
〈
z4〉 −3

〈
z2〉2

〈
r4

〉 = ε4ei4'4 + 3
〈
r2〉2

〈
r4

〉 ε2
2ei4'2 , (6)

where z = reiφ . The calculations for other order anisotropy coef-
ficients and their corresponding initial symmetry planes can be 
found in [30,35]. If the non-linear and linear modes of higher 
order anisotropic flow, V NL

n and V L
n , are uncorrelated (e.g. V L

n is 
perpendicular to V NL

n ), they can be isolated. One of the proposed 
approaches to validate the assumption that V NL

n and V L
n are uncor-

related is testing the following relations [25]:
〈
V 4 (V ∗

2 )2 v 2
2

〉
〈
V 4 (V ∗

2 )2
〉 〈

v 2
2

〉 =
〈
v 6

2

〉
〈
v 4

2

〉 〈
v 2

2

〉 , (7)

〈
V 5 V ∗

3 V ∗
2 v 2

2

〉
〈
V 5 V ∗

3 V ∗
2

〉 〈
v 2

2

〉 =
〈
v 4

2 v 2
3

〉
〈
v 2

2 v 2
3

〉 〈
v 2

2

〉 . (8)

If the above relations are valid, one could combine the analyses 
of higher order anisotropic flow with respect to their correspond-
ing symmetry planes and to the planes of lower order anisotropic 
flow V 2 or V 3 to eliminate the uncertainty from initial state as-
sumptions and extract η/s with better precision [34].

In this Letter, the linear and non-linear modes in higher or-
der anisotropic flow generation are studied in Pb–Pb collisions at √

sNN = 2.76 TeV with the ALICE detector. The main observables 
are introduced in Section 2 and the experimental setup is de-
scribed in Section 3. Section 4 presents the study of the systematic 
uncertainties of the above mentioned observables. The results and 
their discussion are provided in Section 5. Section 6 contains the 
summary and conclusions.

2. Observables and analysis methods

Ideally, the flow coefficient vn can be measured via the az-
imuthal correlations of emitted particles with respect to the sym-
metry plane &n as vn = ⟨cos n(ϕ −&n)⟩. Since &n is unknown ex-
perimentally, the simplest approach to obtain vn is using 2-particle 
correlations:

vn{2} = ⟨⟨cos n(ϕ1 −ϕ2)⟩⟩1/2 =
〈
v2

n

〉1/2
. (9)

Here ⟨⟨ ⟩⟩ denotes the average over all particles in a single event 
and then an average of over all events, ⟨⟩ indicates the event aver-
age of over all events, and ϕi represents the azimuthal angle of the 
i-th particle. The analysed events are divided into two sub-events 
A and B, separated by a pseudorapidity gap, to suppress non-flow 
effects. The latter are the azimuthal correlations not associated to 
the common symmetry plane &n , such as jets and resonance de-
cays. Thus, we modify Eq. (9) to

vn{2} = ⟨⟨cos(nϕ A
1 −nϕB

2 )⟩⟩1/2 =
〈
v2

n

〉1/2
. (10)

Here ϕ A
1 and ϕB

2 are selected from subevent A and B, respectively.
Before introducing observables related to the linear and non-

linear modes in higher order anisotropic flow, it is crucial to verify 
whether Eqs. (7)–(8) are applicable. The left and right hand sides 
of Eq. (7) are obtained by constructing suitable multi-particle cor-
relations [34]:

〈
V 4 (V ∗

2 )2 v 2
2

〉A

〈
V 4 (V ∗

2 )2
〉A 〈

v 2
2

〉

= ⟨⟨cos(4ϕ A
1 + 2ϕ A

2 −2ϕB
3 −2ϕB

4 −2ϕB
5 )⟩⟩

⟨⟨cos(4ϕ A
1 −2ϕB

2 −2ϕB
3 )⟩⟩ ⟨⟨cos(2ϕ A

1 −2ϕB
2 )⟩⟩ , (11)

〈
v 6

2

〉
〈
v 4

2

〉 〈
v 2

2

〉

= ⟨⟨cos(2ϕ A
1 + 2ϕ A

2 + 2ϕ A
3 −2ϕB

4 −2ϕB
5 −2ϕB

6 )⟩⟩
⟨⟨cos(2ϕ A

1 + 2ϕ A
2 −2ϕB

3 −2ϕB
4 )⟩⟩ ⟨⟨cos(2ϕ A

1 −2ϕB
2 )⟩⟩ . (12)

Similarly, we can validate Eq. (8) by calculating both sides
with [34]:

〈
V 5 V ∗

3 V ∗
2 v 2

2

〉A

〈
V 5 V ∗

3 V ∗
2

〉A 〈
v 2

2

〉

= ⟨⟨cos(5ϕ A
1 + 2ϕ A

2 −3ϕB
3 −2ϕB

4 −2ϕB
5 )⟩⟩

⟨⟨cos(5ϕ A
1 −3ϕB

2 −2ϕB
3 )⟩⟩ ⟨⟨cos(2ϕ A

1 −2ϕB
2 )⟩⟩ , (13)



70 ALICE Collaboration / Physics Letters B 773 (2017) 68–80

〈
v 4

2 v 2
3

〉
〈
v 2

2 v 2
3

〉 〈
v 2

2

〉

= ⟨⟨cos(3ϕ A
1 + 2ϕ A

2 + 2ϕ A
3 −3ϕB

4 −2ϕB
5 −2ϕB

6 )⟩⟩
⟨⟨cos(3ϕ A

1 + 2ϕ A
2 −3ϕB

3 −2ϕB
4 )⟩⟩ ⟨⟨cos(2ϕ A

1 −2ϕB
2 )⟩⟩ . (14)

The magnitude of V NL
n was denoted as vn{&m} (here &m is the 

lower order flow symmetry plane and m = 2, 3) in [34]. The no-
tation vn,mk , where n specifies the order of the flow term while 
m and k etc. denote the contributing lower order flow symmetry 
planes, is used in this Letter. If the linear and non-linear modes are 
independent, then the non-linear mode in higher order anisotropic 
flow can be analysed by correlating Vn with &2 or/and &3 [34]. 
For sub-event A we can define:

v A
4,22 = ⟨⟨cos(4ϕ A

1 −2ϕB
2 −2ϕB

3 )⟩⟩
√

⟨⟨cos(2ϕ A
1 + 2ϕ A

2 −2ϕB
3 −2ϕB

4 )⟩⟩
, (15)

v A
5,32 = ⟨⟨cos(5ϕ A

1 −3ϕB
2 −2ϕB

3 )⟩⟩
√

⟨⟨cos(3ϕ A
1 + 2ϕ A

2 −3ϕB
3 −2ϕB

4 )⟩⟩
, (16)

v A
6,222 = ⟨⟨cos(6ϕ A

1 −2ϕB
2 −2ϕB

3 −2ϕB
4 )⟩⟩

√
⟨⟨cos(2ϕ A

1 + 2ϕ A
2 + 2ϕ A

3 −2ϕB
4 −2ϕB

5 −2ϕB
6 )⟩⟩

,(17)

v A
6,33 = ⟨⟨cos(6ϕ A

1 −3ϕB
2 −3ϕB

3 )⟩⟩
√

⟨⟨cos(3ϕ A
1 + 3ϕ A

2 −3ϕB
3 −3ϕB

4 )⟩⟩
. (18)

Similarly, one can obtain v B
n,mk for sub-event B. The average of 

v A
n,mk and v B

n,mk , defined as vn,mk , quantifies the magnitude of the 
non-linear mode in higher order anisotropic flow, which can be 
written as [36]:

v4,22 = ⟨v4 v2
2 cos(4&4 −4&2)⟩√

⟨v4
2⟩

≈ ⟨v4 cos(4&4 −4&2)⟩, (19)

v5,32 = ⟨v5 v3 v2 cos(5&5 −3&3 −2&2)⟩√
⟨v2

3 v2
2⟩

≈ ⟨v5 cos(5&5 −3&3 −2&2)⟩, (20)

v6,222 = ⟨v6 v3
2 cos(6&6 −6&2)⟩√

⟨v6
2⟩

≈ ⟨v6 cos(6&6 −6&2)⟩, (21)

v6,33 = ⟨v6 v2
3 cos(6&6 −6&3)⟩√

⟨v4
3⟩

≈ ⟨v6 cos(6&6 −6&3)⟩. (22)

The approximation is valid if the correlation between lower (n =
2, 3) and higher (n > 3) flow coefficients is weak.

As can be seen in Eqs. (3)–(5), the calculation for V 6 is more 
complicated than V 4 and V 5, and the exact expression for vL

6 is 
currently not available. Therefore, we only focus on the two non-
linear modes of V 6 without discussing vL

6. According to Eqs. (3) to 
(4), the magnitudes of the linear mode in higher order anisotropic 
flow can be calculated as:

vL
4 =

√
v 2

4 {2} −v 2
4,22, (23)

vL
5 =

√
v 2

5 {2} −v 2
5,32. (24)

The ratio of vn,mk to vn{2}, denoted as ρn,mk , can be calculated 
as:

ρ4,22 = v4,22

v4{2} = ⟨cos(4&4 −4&2)⟩, (25)

ρ5,32 = v5,32

v5{2} = ⟨cos(5&5 −3&3 −2&2)⟩, (26)

ρ6,222 = v6,222

v6{2} = ⟨cos(6&6 −6&2)⟩, (27)

ρ6,33 = v6,33

v6{2} = ⟨cos(6&6 −6&3)⟩. (28)

These observables measure the correlations between different or-
der flow symmetry planes if the correlations between different 
order flow coefficients are weak. They are very similar to the so-
called weighted event-plane correlations measured by the ATLAS 
Collaboration [33]. The differences are as follows: ⟨v2

2 v2
3⟩ is used in 

Eq. (20) and (26), while ⟨v2
2⟩⟨v2

3⟩ was used in [33], which did not 
consider the anti-correlations between v2 and v3 found in [27]. In 
addition, multi-particle correlations are used for v2 and v3 in the 
denominator of the observables, while two-particle correlations are 
used in the event-plane correlations which might be biased from 
fluctuations of v2 and v3.

The non-linear mode coefficients χn,mk in Eqs. (3) to (5) are 
defined as:

χ4,22 = v4,22√
⟨v4

2⟩
(29)

χ5,32 = v5,32√
⟨v2

2 v2
3⟩

(30)

χ6,222 = v6,222√
⟨v6

2⟩
(31)

χ6,33 = v6,33√
⟨v4

3⟩
. (32)

These quantify the contributions of the non-linear mode and are 
expected to be independent of v2 or v3.

All of the observables above are based on 2- and multi-particle 
correlations, which can be obtained using the generic framework 
for anisotropic flow analyses introduced in Ref. [24].

3. Experimental setup and data analysis

The data samples analysed in this Letter were recorded by 
ALICE during the Pb–Pb runs of the LHC at a centre-of-mass en-
ergy of √sNN = 2.76 TeV in 2010. Minimum bias Pb–Pb collision 
events were triggered by the coincidence of signals in the V0 de-
tector [37,38], with an efficiency of 98.4% of the hadronic cross 
section [39]. The V0 detector is composed of two arrays of scin-
tillator counters, V0-A and V0-C, which cover the pseudorapidity 
ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. Beam 
background events were rejected using the timing information 
from the V0 and the Zero Degree Calorimeter (ZDC) [37] detectors 
and by correlating reconstructed clusters and tracklets with the Sil-
icon Pixel Detectors (SPD). The fraction of pile-up events in the 
data sample is found to be negligible after applying dedicated pile-
up removal criteria [40]. Only events with a reconstructed primary 
vertex within ± 10 cm from the nominal interaction point along 
the beam direction were used in this analysis. The primary ver-
tex was estimated using tracks reconstructed by the Inner Tracking 
System (ITS) [37,41] and Time Projection Chamber (TPC) [37,42]. 
The collision centrality was determined from the measured V0 
amplitude and centrality intervals were defined following the pro-
cedure described in [39]. About 13 million Pb–Pb events passed all 
of the event selection criteria.
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Tracks reconstructed using the combined information from the 
TPC and ITS are used in this analysis. This combination ensures 
a high detection efficiency, optimum momentum resolution, and 
a minimum contribution from photon conversions and secondary 
charged particles produced either in the detector material or 
from weak decays. To reduce the contributions from secondaries, 
charged tracks were required to have a distance of closest ap-
proach to the primary vertex in the longitudinal (z) direction and 
transverse (xy) plane smaller than 3.2 cm and 2.4 cm, respec-
tively. Additionally, tracks were required to have at least 70 TPC 
space points out of the maximum 159. The average χ2 per degree 
of freedom of the track fit to the TPC space points was required 
to be below 2. In this study, tracks were selected in the pseu-
dorapidity range |η| < 0.8 and the transverse momentum range 
0.2 < pT < 5.0 GeV/c.

4. Systematic uncertainties

Numerous sources of systematic uncertainty were investigated 
by varying the event and track selection as well as the uncertainty 
associated with the possible remaining non-flow effects in the 
analysis. The variation of the results with the collision centrality 
is calculated by alternatively using the TPC or SPD to estimate the 
event multiplicity and is found to be less than 3% for all observ-
ables. Results with opposite polarities of the magnetic field within 
the ALICE detector and with narrowing the nominal ± 10 cm range 
of the reconstructed vertex along the beam direction from the cen-
tre of the ALICE detector to 9, 8 and 7 cm do not show a difference 
of more than 2% compared to the default selection criteria for var-
ious measurements. The contributions from pile-up events to the 
final systematic uncertainty are found to be negligible. The sensi-
tivity to the track selection criteria was explored by varying the 
number of TPC space points and by using tracks reconstructed in 
the TPC alone. Varying the number of TPC space points from 70 
to 80, 90 and 100 out of a possible 158, results in a 1–3% varia-
tion of the results for vn , within 1.5% for ρn,mk and χn,mk . Using 
TPC-only tracks leads to a difference of less than 14%, 17% and 8% 
for vn , ρn,mk and χn,mk , respectively. Both effects were included in 
the evaluation of the systematic uncertainty. Several different ap-
proaches have been applied to estimate the effects of non-flow. 
These include the investigation of multi-particle correlations with 
various |+η| gaps, the application of the like-sign technique which 
correlates two particles with either all positive or negative charges 
and suppress such non-flow as due to resonance decays, as well as 
the calculations using HIJING Monte Carlo simulations [43], which 
do not include anisotropic flow. It was found that the possible re-
maining non-flow effects are less than 10.5%, 11% and 7% for vn , 
ρn,mk and χn,mk , respectively. They are taken into account in the fi-
nal systematic uncertainty. The systematic uncertainties evaluated 
for each source mentioned above were added in quadrature to ob-
tain the total systematic uncertainty of the measurements.

5. Results and discussion

As discussed in Sec. 2, one can validate the assumption that 
linear and non-linear modes in higher order anisotropic flow are 
uncorrelated via Eqs. (7) and (8). These have been tested in A 
Multi-Phase Transport (AMPT) model [25] as well as in the hy-
drodynamic calculations [44]. Good agreement between left- and 
right-hand sides of Eqs. (7) and (8) is found for all centrality 
classes, independent of the initial conditions and the ideal or vis-
cous fluid dynamics used in the calculations. Thus, it is crucial 
to check these equalities in data, to further confirm the assump-
tion that the two components are uncorrelated and can be iso-
lated independently. Fig. 1 confirms that the agreement observed 

Fig. 1. Study of relationship between linear and non-linear modes in higher or-
der anisotropic flow in Pb–Pb collisions at √sNN = 2.76 TeV, according to Eqs. (7)
and (8).

in theoretical calculations is also present in the data despite small 
deviations found in central collisions when testing Eqs. (8). Their 
centrality dependency are similar as the previous theoretical pre-
dictions [25,44]. The measurements support the assumption that 
higher order anisotropic flow Vn (n > 3) can be modeled as the 
sum of independent linear and non-linear modes.

The magnitudes of linear and non-linear modes in higher order 
anisotropic flow are reported as a function of collision central-
ity in Fig. 2. In this Letter, sub-events A and B are built in the 
pseudorapidity ranges −0.8 < η < −0.4 and 0.4 < η < 0.8, re-
spectively, which results in a pseudorapidity gap of |+η| > 0.8 for 
all presented measurements. It can be seen that the linear mode 
vL

4 depends weakly on centrality and is the larger contribution to 
v4{2} for the centrality range 0–30%. The non-linear mode, v4,22, 
increases monotonically as the centrality decreases and saturates 
around centrality percentile 50%, becoming the dominant source 
for centrality intervals above 40%. Similar trends of centrality de-
pendence have been observed for V 5, although v5,32 becomes the 
dominant contribution in centrality percentile above 30%. Only two 
non-linear components v6,222 and v6,33 are discussed for V 6. It is 
shown in Fig. 2 (right) that v6,222 increases monotonically as the 
centrality decreases to centrality 50%, while v6,33 has a weaker 
centrality dependence compared to v6,222.

The linear and non-linear modes in higher order anisotropic 
flow were investigated by the ATLAS Collaboration [26] using a 
different approach based on “Event Shape Engineering” [45]. With 
this method one can utilise large fluctuations in the initial geome-
try of the system to select events corresponding to a specific initial 
shape. The conclusion is qualitatively consistent with what is re-
ported here, although a direct comparison is not possible due to 
the different kinematic cuts (especially the integrated pT range) 
used in the two measurements. The higher order anisotropic flow 
induced by lower order anisotropic flow were also measured us-
ing the event-plane method at the LHC [14,46]. However, the 
measurements of the non-linear mode presented in this Letter 
are based on the multi-particle correlations method with a |+η|
gap. This method makes it easier to measure an observable like 
v5,32, which is less straightforward to define using the event plane 
method [14,46]. In addition, as pointed out in [25,34,47], this 
new multi-particle correlations method should strongly suppress 
short-range (in pseudorapidity) non-flow effects and provides a ro-
bust measurement without any dependence on the experimental 
acceptance. The measurements are compared to recent hydrody-
namic calculations from a hybrid IP-Glasma+ MUSIC+ UrQMD
model [48], in which realistic event-by-event initial conditions are 
used and the hydrodynamic evolution takes into account both 
shear and bulk viscosity. It is shown that this hydrodynamic cal-
culation could describe quantitatively the total magnitudes of V 4
and V 6, as well as the magnitudes of their linear and non-linear 
modes, while it slightly overestimates the results for V 5.

The centrality dependence of ρn,mk , which quantifies the angu-
lar correlations between different order flow symmetry planes, is 
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Fig. 2. Centrality dependence of v4 (left), v5 (middle) and v6 (right) in Pb–Pb collisions at √sNN = 2.76 TeV. Contributions from linear and non-linear modes are presented 
with open and solid markers, respectively. The hydrodynamic calculations from IP-Glasma+ MUSIC+ UrQMD [48] are shown for comparison.

Fig. 3. Centrality dependence of ρn,mk in Pb–Pb collisions at √sNN = 2.76 TeV. ATLAS 
measurements based on the event-plane correlation [33] are presented with open 
markers. The hydrodynamic calculations from IP-Glasma+ MUSIC+ UrQMD [48]
are shown with open bands. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

presented in Fig. 3. It is observed that ρ4,22 increases from cen-
tral to peripheral collisions, which suggests that the correlations 
between &2 and &4 are stronger in peripheral than in central 
collisions. It implies that V NL

4 tends to align with V 4 in more 
peripheral collisions. The results of ρ6,33, which measures the 
correlation of &3 and &6, do not exhibit a strong centrality de-
pendence within the statistical uncertainties. As mentioned above, 
ρ4,22 and ρ6,33 are similar to the previous “event-plane correla-
tion” measurements ⟨cos(4'4 −4'2)⟩w and ⟨cos(6'6 −6'3)⟩w
in [33]. The comparisons between measurements of these ob-
servables are also presented in Fig. 3. The results are compatible 
with each other, despite the different kinematic ranges used by 
ATLAS and this analysis. It should be also noted that the mea-
surements of ρn,mk presented in this Letter show the symmetry 
plane correlations at mid-pseudorapidity |η| < 0.8 while ATLAS 
measured the symmetry plane correlations using −4.8 < η < −0.5
and 0.5 < η < 4.8 for two-plane correlations, and using −2.7 <
η < −0.5, 0.5 < η < 2.7 and 3.3 < |η| < 4.8 for 3-plane corre-
lations [33]. Previous investigations suggest that there might be 
η-dependent fluctuations of the flow symmetry plane and the flow 
magnitude [49,50]. As a consequence, one might expect a differ-
ence when measuring the correlations of flow symmetry planes 
from different pseudorapidity regions. However, Fig. 3 shows good 
agreement between the ALICE and ATLAS measurements. There-
fore, no obvious indication that the flow symmetry plane varies 
with η can be deduced from this comparison. It is noticeable in 
Fig. 3 that the ρ5,32 measurement seems slightly higher than the 
⟨cos(5'5 −3'3 −2'2)⟩w measurement. This is mainly due to a 

small difference between the definitions of the observable as in-
troduced in Sec. 2: the term 

〈
v2

2 v2
3

〉1/2
is used in ρ5,32, whereas 

〈
v2

2

〉1/2 〈
v2

3

〉1/2
is used in the “event-plane correlations” [33]. Con-

sidering the known anti-correlations between v2 and v3 [26,27], 〈
v2

2 v2
3

〉1/2
could be up to 10% lower than 

〈
v2

2

〉1/2 〈
v2

3

〉1/2
depending 

on the centrality class [27], leading to a slightly larger ρ5,32 than 
⟨cos(5'5 −3'3 −2'2)⟩w from ATLAS.

It has been observed in hydrodynamic and transport model cal-
culations that the symmetry plane correlations, e.g. correlations 
of second and fourth order symmetry planes, change sign dur-
ing the system evolution [29,30,32]. The measured flow symmetry 
plane correlations could be nicely explained by the combination 
of contributions from linear and non-linear modes in higher or-
der anisotropic flow [30]. This indicates that the flow symmetry 
plane correlation ρn,mk carries important information about the 
dynamic evolution of the created system. In addition, the model 
calculations suggest that stronger initial symmetry plane corre-
lations are reflected in stronger correlations between the flow 
symmetry planes in the final state [29,32]. And a larger value 
of η/s of the QGP leads to weaker flow symmetry plane corre-
lations in the final state. As pointed out in [29], the hydrody-
namic calculations from VISH2+ 1 using Monte Carlo Glauber 
(MC-Glb) or Monte Carlo Kharzeev–Levin–Nardi (MC-KLN) initial 
conditions can only describe qualitatively the trends of the cen-
trality dependence of the event-plane correlation measurements 
by ATLAS. It is therefore expected that these hydrodynamic calcu-
lations cannot describe the presented ALICE measurements, which 
are compatible with the ATLAS event-plane correlation measure-
ments. Fig. 3 shows that the hydrodynamic calculations from 
IP-Glasma+ MUSIC+ UrQMD [48] reproduce nicely the mea-
surements of symmetry plane correlations ρn,mk . The measure-
ments of ρn,mk presented in this Letter, together with the com-
parison to hydrodynamic calculations, should place constraints on 
the initial conditions and η/s of the QGP in hydrodynamic calcula-
tions.

Fig. 4 presents the measurements of the non-linear mode coef-
ficients as a function of collision centrality. It is observed that χ4,22
and χ6,222 decrease modestly from central to mid-central colli-
sions, and stay almost constant from mid-central to more periph-
eral collisions. For χ5,32 and χ6,33 strong centrality dependence is 
not observed either. Thus, the dramatic increase of vn,mk shown 
in Fig. 2 appears to be mainly due to the increase of v2 and/or 
v3 from central to peripheral collisions and not the increase of the 
non-linear mode coefficient. It is also noteworthy that the relation-
ship of χ4,22 ∼ χ6,33 ≈ χ5,32

2 is approximately valid, as predicted 
by hydrodynamic calculations [34]. The comparisons to event-by-
event viscous hydrodynamic calculations from VISH2+ 1 [44] and 
from IP-Glasma+ MUSIC+ UrQMD [48] are also presented in 
Fig. 4. VISH2+ 1 shows that χ4,22 calculations with MC-Glb ini-
tial conditions are larger than those with MC-KLN initial condi-
tions, i.e. χ4,22 depends on the initial conditions. At the same time, 
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Fig. 4. Centrality dependence of χ in Pb–Pb collisions at √sNN = 2.76 TeV. Hydro-
dynamic calculations from VISH2+ 1 [44] are shown in shaded areas and the one 
from IP-Glasma+ MUSIC+ UrQMD [48] are shown with open bands. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

the curves with different η/s values for VISH2+ 1 are very sim-
ilar, indicating that χ4,22 is insensitive to η/s. The measurements 
favour IP-Glasma and MC-KLN over MC-Glb initial conditions re-
gardless of η/s. This suggests that the χ4,22 measurement can be 
used to constrain the initial conditions, with less concern of the 
setting of η/s(T ) in hydrodynamic calculations than previous flow 
observables.

It was predicted that χ6,222 < χ6,33 based on the ideal hy-
drodynamic calculation using smooth initial Gaussian density pro-
files [34], whereas an opposite prediction was obtained in the 
ideal hydrodynamic calculation evolving genuinely bumpy initial 
conditions obtained from a Monte Carlo sampling of the initial nu-
cleon positions in the colliding nuclei [44]. It is seen in Fig. 4 that 
χ6,222 ∼ χ6,33 within the current uncertainties. The data are not 
able to discriminate the different predictions in [34] and [44]. Hy-
drodynamic calculations using MC-KLN and IP-Glasma initial con-
ditions give better descriptions of χ6,222, compared to the ones 
using MC-Glb initial conditions. For χ5,32 none of the combina-
tions of initial conditions and η/s in the hydrodynamic calculations 
agree quantitatively with data. This might be due to the current 
difficulty of describing the anti-correlations between v2 and v3
in hydrodynamic calculations [27,51], which are involved in the 
calculation of χ5,32. Furthermore, VISH2+ 1 calculations show 
that χ5,32 and χ6,33 are very weakly sensitive to the initial con-
ditions, but decrease as η/s increases. The investigation with the 
VISH2+ 1 hydrodynamic framework shows that the sensitivity 
of χ5,32 and χ6,33 to η/s is not due to sensitivity to shear vis-
cous effects during the buildup of hydrodynamic flow. Instead, as 
found in [44], it is due to the η/s at freeze-out. The measurements 
of χ5,32 and χ6,33 do not further constrain the η/s during sys-
tem evolution, however, they provide unique information on η/s at 
freeze-out which was poorly known and cannot be obtained from 
other anisotropic flow related observables. Further improvement of 
model calculations on correlations between different order flow 
coefficients are necessary to better understand the comparison 
of χ5,32 obtained from data and hydrodynamic calculations. The 
χ6,33 results are consistent with hydrodynamic calculations from 
VISH2+ 1 with MC-KLN initial conditions using η/s = 0.08 and 
IP-Glasma+ MUSIC+ UrQMD with a η/s = 0.095. It is shown 
that χ5,32 and χ6,33 have a weak centrality dependence if a 
smaller η/s is used in the hydrodynamic calculations. Such a weak 

centrality dependence of χ5,32 and χ6,33 is observed in data as 
well. The measurements presented here suggest a small η/s value 
at freeze-out, which can be useful to constrain the temperature de-
pendence of the shear viscosity over entropy density ratio, η/s(T), 
in the development of hydrodynamic frameworks. These results 
suggest that future tuning of the parameterisations of η/s(T) in 
hydrodynamic frameworks using the presented measurements is 
necessary.

6. Summary

The linear and non-linear modes in higher order anisotropic 
flow generation were studied with 2- and multi-particle corre-
lations in Pb–Pb collisions at √sNN = 2.76 TeV. The results pre-
sented in this Letter show that higher order anisotropic flow can 
be isolated into two independent contributions: the component 
that arises from a non-linear response of the system to the lower 
order initial anisotropy coefficients ε2 and/or ε3, and a linear mode 
which is driven by linear response of the system to the same order 
cumulant-defined anisotropy coefficient. A weak centrality depen-
dence is observed for the contributions from linear mode whereas 
the contributions from non-linear mode increase dramatically as 
the collision centrality decreases, and it becomes the dominant 
source in higher order anisotropic flow in mid-central to periph-
eral collisions. It is shown that this is mainly due to the increase 
of lower order flow coefficients v2 and v3. The correlations be-
tween different flow symmetry planes are measured. The results 
are compatible with the previous “event-plane correlation” mea-
surements, and can be quantitatively described by calculations us-
ing the IP-Glasma+ MUSIC+ UrQMD framework. Furthermore, 
non-linear mode coefficients, which have different sensitivities to 
the shear viscosity over entropy density ratio η/s and the initial 
conditions, are presented in this Letter. Comparisons to hydrody-
namic calculations suggest that the data is described better by 
hydrodynamic calculations with smaller η/s. In addition, the MC-
Glb initial condition is disfavoured by the presented results.

Measurements of linear and non-linear modes in higher order 
anisotropic flow and their comparison to hydrodynamic calcula-
tions provide more precise constraints on the initial conditions and 
temperature dependence of η/s. These results could also offer new 
insights into the geometry of the fluctuating initial state and into 
the dynamical evolution of the strongly interacting medium pro-
duced in relativistic heavy-ion collisions at the LHC.
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