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We present the first measurements of femtoscopic correlations between the K0
S and K± particles in pp 

collisions at √
s = 7 TeV measured by the ALICE experiment. The observed femtoscopic correlations 

are consistent with final-state interactions proceeding solely via the a0(980) resonance. The extracted 
kaon source radius and correlation strength parameters for K0

S K− are found to be equal within the 
experimental uncertainties to those for K0

SK+. Results of the present study are compared with those 
from identical-kaon femtoscopic studies also performed with pp collisions at √s = 7 TeV by ALICE and 
with a K0

SK± measurement in Pb–Pb collisions at √sNN = 2.76 TeV. Combined with the Pb–Pb results, our 
pp analysis is found to be compatible with the interpretation of the a0(980) having a tetraquark structure 
instead of that of a diquark.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Recently, by using Pb–Pb collisions at √
sNN = 2.76 TeV, the 

ALICE experiment [1] has published the first-ever study of K0
SK±

femtoscopy [2]. K0
SK± femtoscopy differs from identical-kaon fem-

toscopy, for which a number of studies exist in the literature [3–6], 
in that the only pair interaction expected is a final-state inter-
action (FSI) through the a0(980) resonance. It was found in that 
Pb–Pb study that the FSI in K0

SK± proceeds solely through the 
a0(980) resonance, i.e. with no competing non-resonant channels, 
and the extracted kaon source parameters agree with published re-
sults from identical-kaon studies in Pb–Pb collisions. These results 
were found to be compatible with the interpretation of the a0 res-
onance as a tetraquark state rather than a diquark1 state [2,7–9]. 
A recent theoretical calculation has shown that the ALICE Pb–Pb 
results can indeed be described by a model based on the four-
quark model [10].

The argument given in Ref. [2] for a tetraquark a0 being com-
patible with the Pb–Pb K0

SK± result stated above is based on two 
factors: 1) the kaon source geometry, and 2) an empirical selec-
tion rule (for the sake of simplicity of notation, “a0” will be used 
for the remainder of this paper to represent “a0(980)”). For factor 
1), the production cross section of the a0 resonance in a reaction 
channel such as K0K− → a−

0 should depend on whether the a−
0

is composed of du or dssu quarks, the former requiring the an-
nihilation of the ss pair and the latter being a direct transfer of 

⋆ E-mail address: alice -publications @cern .ch.
1 Note that the term “diquark” will be used in this paper to indicate a qiq j quark 

pair.

the valence quarks from the kaons to the a−
0 . Since the femto-

scopic size of the 0–10% most central Pb–Pb collision is measured 
to be 5–6 fm, the large geometry in these collisions is favorable for 
the direct transfer of quarks to the a0, whereas not favorable for 
the annihilation of the strange quarks due to the short-ranged na-
ture of the strong interaction. For factor 2), the direct transfer of 
the valence quarks from the kaons to the a−

0 is favored since this 
is an “OZI superallowed” reaction [9]. The OZI rule can be stated 
as “an inhibition associated with the creation or annihilation of 
quark lines” [9]. Thus, the annihilation of the strange quarks is 
suppressed by the OZI rule. Both of these factors favor the forma-
tion of a tetraquark a0 and suppress the formation of a diquark a0. 
As a result of this, if the a0 were a diquark, one would expect 
competing non-resonant channels present and/or no FSI at all, i.e. 
free-streaming, of the kaon pair thus diluting the strength of the 
a0 resonant FSI. The fact that this is not seen to be the case in 
Pb–Pb collisions favors the tetraquark a0 interpretation.

The geometry of the kaon source is seen to be an important fac-
tor in the argument given above, i.e. the large kaon source seen in 
Pb–Pb collisions suppresses the annihilation of the strange quarks 
in the kaon pair and enhances the direct transfer of quarks to 
the a0. It is interesting to speculate on the dependence of the 
strength of the a0 resonant FSI on the size of the kaon source, 
particularly for a very small source of size ∼1 fm that would be 
obtained in pp collisions [4,5]. For a kaon source of size ∼1 fm, 
the kaons in a produced kaon pair would be overlapping with 
each other at the source, thus giving a geometric enhancement of 
the strange-quark annihilation channel that could compete with, or 
even dominate over, the OZI rule suppression of quark annihilation. 
Thus we might expect that the tetraquark a0 resonant FSI could 
be diluted or completely suppressed by competing non-resonant 
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annihilation channels that could open up, whereas a diquark a0
resonant FSI, which was not seen to be suppressed by either geom-
etry or the OZI rule in Pb–Pb, would not be diluted. A femtoscopic 
measurement of K0

SK± correlations in pp collisions should be able 
to test this by determining the strength of the a0 FSI by measuring 
the femtoscopic λ parameter. In more concrete terms, if we were 
to compare the λ parameters extracted in K0

SK± femtoscopic mea-
surements in pp collisions and Pb–Pb collisions, for a tetraquark a0
we would expect λK 0

S K ± (PbPb) > λK 0
S K ± (pp) whereas for a diquark a0

we would expect λK 0
S K ± (PbPb) ∼λK 0

S K ± (pp) . An independent check 
could also be made by comparing λ from K0

S K± femtoscopy in pp 
collisions with λ from identical-kaon femtoscopy in pp collisions in 
a similar way as was done for Pb–Pb collisions [2]. Since we expect 
identical-kaon correlations to go solely through quantum statistics 
(and FSI for neutral kaons), our expectation for a tetraquark a0
would be λK K (pp) > λK 0

S K ± (pp) whereas for a diquark a0 we would 
expect λK K (pp) ∼λK 0

S K ± (pp) .
In this Letter, femtoscopic correlations with the particle pair 

combinations K0
SK± are studied for the first time in pp collisions 

at 
√

s = 7 TeV by the ALICE experiment. The physics goals of the 
present K0

S K± femtoscopy study are the following: 1) show to what 
extent the FSI through the a0 resonance describes the correlation 
functions, 2) study the K0 and K

0
sources to see if there are dif-

ferences in the source parameters, 3) compare the results of the 
extracted kaon source parameters from the present study with the 
published results from Pb–Pb collisions and identical kaon results 
from pp collisions, and 4) see if the results from this pp study 
are compatible with a tetraquark a0 as suggested from the Pb–Pb 
study.

2. Description of experiment and data selection

The ALICE experiment and its performance in the LHC Run 1 
(2009–2013) are described in Ref. [1] and Refs. [11,12], respec-
tively. About 370 × 106 minimum-bias 7 TeV pp collision events 
taken in 2010 were used in this analysis. Events were classified 
using the measured amplitudes in the V0 detectors, which con-
sist of two arrays of scintillators located along the beamline and 
covering the full azimuth [13,14]. Charged particles were recon-
structed and identified with the central barrel detectors located 
within a solenoid magnet with a field strength of B = ± 0.5 T. 
Charged particle tracking was performed using the Time Projection 
Chamber (TPC) [15] and the Inner Tracking System (ITS) [1]. The 
ITS allowed for high spatial resolution in determining the primary 
(collision) vertex. A momentum resolution of less than 10 MeV/c
was typically obtained for the charged tracks of interest in this 
analysis [16]. The primary vertex was obtained from the ITS, the 
position of the primary vertex being constrained along the beam 
direction (the “z-position”) to be within ± 10 cm of the center of 
the ALICE detector. In addition to the standard track quality selec-
tions [16], the selections based on the quality of track fitting and 
the number of detected tracking points in the TPC were used to 
ensure that only well-reconstructed tracks were taken in the anal-
ysis [11,15,16].

Particle identification (PID) for reconstructed tracks was carried 
out using both the TPC and the Time-of-Flight (TOF) detectors in 
the pseudorapidity range |η| < 0.8 [11,12]. For the PID signal from 
both detectors, a value was assigned to each track denoting the 
number of standard deviations between the measured track in-
formation and calculated values (Nσ ) [6,11,12,16]. For TPC PID, a 
parametrized Bethe–Bloch formula was used to calculate the spe-
cific energy loss ⟨dE/dx⟩ in the detector expected for a particle 
with a given mass and momentum. For PID with TOF, the particle 

mass was used to calculate the expected time-of-flight as a func-
tion of track length and momentum. This procedure was repeated 
for four “particle species hypotheses”, i.e. electron, pion, kaon and 
proton, and, for each hypothesis, a different Nσ value was obtained 
per detector.

2.1. Kaon selection

The methods used to select and identify individual K0
S and K±

particles are the same as those used for the ALICE K0
SK0

S [4] and 
K± K± [5] analyses from 

√
s = 7 TeV pp collisions. These are now 

described below.

2.1.1. K0
S selection

The K0
S particles were reconstructed from the decay K0

S →
π+π− , with the daughter π+ and π− tracks detected in the TPC, 
ITS and TOF detectors. The secondary vertex finder used to locate 
the neutral kaon decays employed the “on-the-fly” reconstruction 
method [16], which recalculates the daughter track momenta dur-
ing the original tracking process under the assumption that the 
tracks came from a decay vertex instead of the primary vertex. 
Pions with pT > 0.15 GeV/c were accepted (since for lower pT
track finding efficiency drops rapidly) and the distance of clos-
est approach to the primary vertex (DCA) of the reconstructed 
K0

S was required to be less than 0.3 cm in all directions. The re-
quired Nσ values for the pions were NTPC

σ < 3 (for all momenta) 
and NTOF

σ < 3 for p > 0.8 GeV/c. An invariant mass distribution 
for the π+π− pairs was produced and the K0

S was defined to 
be resulting from a pair that fell into the invariant mass range 
0.480 < mπ+π− < 0.515 GeV/c2, corresponding to ± 4.7σ , where 
σ = 3.7 MeV/c2 is the width of a Gaussian fit to the invariant mass 
distribution.

2.1.2. K± selection
Charged kaon tracks were detected using the TPC and TOF de-

tectors, and were accepted if they were within the range 0.14 <
pT < 1.2 GeV/c in order to obtain good PID. The determination 
of the momenta of the tracks was performed using tracks recon-
structed with the TPC only and constrained to the primary vertex. 
In order to reduce the number of secondary tracks (for instance 
the charged particles produced in the detector material, particles 
from weak decays, etc.), the primary charged kaon tracks were se-
lected based on the DCA, such that the DCA transverse to the beam 
direction was less than 2.4 cm and the DCA along the beam direc-
tion was less than 3.2 cm. If the TOF signal were not available, 
the required Nσ values for the charged kaons were NTPC

σ < 2 for 
pT < 0.5 GeV/c, and the track was rejected for pT > 0.5 GeV/c. If 
the TOF signal were also available and pT > 0.5 GeV/c: NTPC

σ < 2
and NTOF

σ < 2 (0.5 < pT < 1.2 GeV/c).
The K0

SK± experimental pair purity was estimated from a Monte 
Carlo (MC) study based on PYTHIA [17] simulations with the Pe-
rugia2011 tune [18], and using GEANT3 [19] to model particle 
transport through the ALICE detectors. The purity was determined 
from the fraction of the reconstructed MC simulated pairs that 
were identified as known K0

SK± pairs from PYTHIA. The pair pu-
rity was estimated to be ∼83% for all kinematic regions studied 
in this analysis. The single-particle purities for K0

S and K± parti-
cles used in this analysis were estimated to be ∼92% and ∼91%, 
respectively. The uncertainty in calculating the pair purity is esti-
mated to be ± 1%.
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3. Analysis methods

3.1. Experimental correlation functions

This analysis studies the momentum correlations of K0
S K± pairs 

using the two-particle correlation function, defined as

C(k∗) = A(k∗)
B(k∗)

, (1)

where A(k∗) is the measured distribution of pairs from the same 
event, B(k∗) is the reference distribution of pairs from mixed 
events, and k∗ is the magnitude of the momentum of each of the 
particles in the pair rest frame (PRF),

k∗ =

√
(s − m2

K0 − m2
K± )2 − 4m2

K0m2
K±

4s
(2)

where

s = m2
K0 + m2

K± + 2EK0 EK± − 2p⃗K0 · p⃗K± (3)

and mK0 (EK0 ) and mK± (EK± ) are the rest masses (total energies) 
of the K0

S and K± , respectively.
The denominator B(k∗) was formed by mixing K0

S and K± par-
ticles from each event with K± and K0

S particles, respectively, from 
ten other events, where each event has at least both a K± and a 
K0

S [2]. The vertices of the mixed events were constrained to be 
within 2 cm of each other in the z-direction.

Two-track effects, such as the merging of two real tracks into 
one reconstructed track and the splitting of one real track into two 
reconstructed tracks, is an important issue for femtoscopic studies. 
This analysis dealt with these effects using the following method. 
For each kaon pair, the distance between the K0

S pion daughter 
track and the same-charged K± track was calculated at up to nine 
points throughout the TPC (every 20 cm from 85 cm to 245 cm) 
and then averaged. Comparing pairs from the same event to those 
from mixed events, one observes a splitting peak for an average 
separation of < 11 cm. To correct for this, this analysis demanded 
that the same-charge particles from each kaon pair must have an 
average TPC separation of at least 13 cm. Mixed-event tracks were 
normalized by subtracting the primary vertex position from each 
used track point.

Correlation functions were created separately for the two dif-
ferent charge combinations, K0

SK+ and K0
SK− , and for three over-

lapping/non-exclusive pair transverse momentum kT = |p⃗T,1 +
p⃗T,2|/2 ranges: all kT, kT < 0.85 and kT > 0.85 GeV/c, where 
kT = 0.85 GeV/c is the location of the peak of the kT distribu-
tion. The mean kT values for these three bins were 0.66, 0.49 and 
1.17 GeV/c, respectively. The raw K0

SK+ correlation functions for 
these three bins compared with those generated from PYTHIA sim-
ulations with the Perugia2011 tune and using GEANT3 to model 
particle transport through the ALICE detectors are shown in Fig. 1. 
The PYTHIA correlation functions are normalized to the data in 
the vicinity of k∗ = 0.8 GeV/c. The raw K0

SK− correlation functions 
look very similar to these. It is seen that although PYTHIA qualita-
tively describes the trends of the baseline of the data, it does not 
describe it quantitatively such that it could be used to model the 
baseline directly. Instead, for the present analysis the strategy for 
dealing with the baseline was to describe it with several functional 
forms to be fitted to the experimental correlation functions and to 
use PYTHIA to test the appropriateness of the proposed baseline 
functional forms.

Three functional forms for the baseline were tested with 
PYTHIA: quadratic, Gaussian and exponential, given by

Fig. 1. Raw K0
S K+ correlation functions for the three kT bins compared with those 

from PYTHIA. The error bars are statistical. The scale of C(k∗) is arbitrary. The 
PYTHIA correlation functions are normalized to the data in the vicinity of k∗ =
0.8 GeV/c.

Cquadratic(k
∗) = a(1 − bk∗ + ck∗2) (4)

CGaussian(k∗) = a(1 + b exp(−ck∗2)) (5)

Cexponential(k
∗) = a(1 + b exp(−ck∗)) (6)

where a, b and c are fit parameters. Fig. 2 shows fits of Eq. (4), 
Eq. (5) and Eq. (6) to the PYTHIA correlation functions shown 
in Fig. 1 for the three kT ranges used in this analysis. As seen, 
all three functional forms do reasonably well in representing the 
PYTHIA correlation functions. Thus, all three forms were used in 
fitting the experimental correlation function and the different re-
sults obtained will be used to estimate the systematic uncertainty 
due to the baseline estimation. Of course there are an infinite 
number of functions one could try to represent the baseline, but 
at least the three that were chosen for this work are simple and 
representative of three basic functional forms.

Correlation functions were corrected for momentum resolution 
effects using PYTHIA calculations. The particle momentum resolu-
tion in ALICE for the relatively low-momentum tracks used in the 
present analysis was < 10 MeV/c [1]. Two correlation functions 
were generated with PYTHIA: one in terms of the generator-level 
k∗ and one in terms of the simulated detector-level k∗ . Because 
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Fig. 2. Comparisons of fits of three possible baseline functional forms with the 
PYTHIA correlation functions that were shown in Fig. 1. Fits were made in the k∗

range 0–0.8 GeV/c. The scale of C(k∗) is arbitrary.

PYTHIA does not incorporate final-state interactions, simulated 
femtoscopic weights were determined using a 9th-order polyno-
mial fit in k∗ to the experimental correlation function for the kT
range considered. When filling the same-event distributions, i.e. 
A(k∗) in Eq. (1), kaon pairs were individually weighted by this 
9th-order fit according to their generator-level k∗ . Then, the ra-
tio of the “ideal” correlation function to the “measured” one (for 
each k∗ bin) was multiplied to the data correlation functions be-
fore the fit procedure. This correction mostly affected the lowest 
k∗ bins, increasing the extracted source parameters by ∼2%.

3.2. Final-state interaction model

The final-state interaction model used in the present pp colli-
sion analysis follows the same principles as the ones used for the 
ALICE Pb–Pb collision analysis [2]. The measured K0

SK± correlation 
functions were fit with formulas that include a parameterization 
which incorporates strong FSI. It was assumed that the FSI arises 
in the K0

S K± channels due to the near-threshold resonance, a0. This 
parameterization was introduced by R. Lednicky and is based on 
the model by R. Lednicky and V.L. Lyuboshitz [20,21] (see also 
Ref. [3] for more details on this parameterization).

Using an equal emission time approximation in the PRF [20], 
the elastic K0

S K± transition is written as a stationary solution 
&−k⃗∗ (r⃗∗) of the scattering problem in the PRF. The quantity r⃗∗ rep-

resents the emission separation of the pair in the PRF, and the −k⃗∗

subscript refers to a reversal of time from the emission process. At 
large distances this has the asymptotic form of a superposition of 
an incoming plane wave and an outgoing spherical wave,

&−k⃗∗(r⃗∗) = e−ik⃗∗·r⃗∗ + f (k∗)
eik∗r∗

r∗ , (7)

where f (k∗) is the s-wave K0K− or K
0
K+ scattering amplitude 

whose contribution is the s-wave isovector a0 resonance (see 
Eq. (11) in Ref. [3]) and

f (k∗) =
γa0→KK

m2
a0 − s − i(γa0→KKk∗ + γa0→πηkπη)

. (8)

In Eq. (8), ma0 is the mass of the a0 resonance, and γa0→KK

and γa0→πη are the couplings of the a0 resonance to the K0K−

(or K
0

K+) and πη channels, respectively. Also, s = 4(m2
K0 + k∗2)

Table 1
The a0 mass and coupling parameters, all in GeV/c2, used in the present study.

Reference ma0 γa0→KK γa0→πη

Achasov2 [7] 1.003 0.8365 0.4580

and kπη denotes the momentum in the second decay channel (πη) 
(see Table 1).

The correlation function due to the FSI is then calculated by 
integrating &−k⃗∗ (r⃗∗) in the Koonin–Pratt equation [22,23],

CFSI(k⃗∗) =
∫

d3 r⃗∗ S(r⃗∗)
∣∣∣&−k⃗∗(r⃗∗)

∣∣∣
2

, (9)

where S(r⃗∗) is a one-dimensional Gaussian source function of the 
PRF relative distance 

∣∣r⃗∗∣∣ with a Gaussian width R of the form

S(r⃗∗) ∼e−
∣∣r⃗∗∣∣2

/(4R2) . (10)

Equation (9) can be integrated analytically for K0
SK± correla-

tions with FSI for the one-dimensional case, with the result

CFSI(k∗) = 1 + λα

[
1
2

∣∣∣∣
f (k∗)

R

∣∣∣∣
2

+ 2R f (k∗)√
π R

F1(2k∗R)

− I f (k∗)
R

F2(2k∗R) + )C

]

, (11)

where

F1(z) ≡
√

πe−z2
erfi(z)

2z
; F2(z) ≡ 1 − e−z2

z
. (12)

In the above equations α is the fraction of K0
SK± pairs that come 

from the K0K− or K
0

K+ system, set to 0.5 assuming symmetry 
in K0 and K

0
production [3], R is the radius parameter from the 

spherical Gaussian source distribution given in Eq. (10), and λ is 
the correlation strength. The correlation strength is unity in the 
ideal case of pure a0-resonant FSI, perfect PID, a perfect Gaussian 
kaon source and the absence of long-lived resonances which de-
cay into kaons. The term )C is a calculated correction factor that 
takes into account the deviation of the spherical wave assumption 
used in Eq. (7) in the inner region of the short-range potential (see 
the Appendix in Ref. [3]). Its effect on the extracted R and λ pa-
rameters is to increase them by ∼14%. Note that the form of the 
FSI term in Eq. (11) differs from the form of the FSI term for K0

SK0
S

correlations (Eq. (9) of Ref. [3]) by a factor of 1/2 due to the non-
identical particles in K0

SK± correlations and thus the absence of the 
requirement to symmetrize the wavefunction given in Eq. (7).

As seen in Eq. (8), the K0K− or K
0

K+ s-wave scattering ampli-
tude depends on the a0 mass and decay couplings. From the ALICE 
Pb–Pb collision K0

SK± study [2], it was found that source param-
eters extracted with the “Achasov2” parameters of Ref. [7] agreed 
best with the identical kaon measurements, thus in the present pp 
collision study only the Achasov2 parameters are used. These pa-
rameters are shown in Table 1. Since the correction factor )C is 
found to mainly depend on γa0 K K̄ [3], it is judged that the system-
atic uncertainty on the calculation of )C is negligible.

The experimental K0
SK± correlation functions, calculated using 

Eq. (1), were fit with the expression

C(k∗) = CFSI(k∗)Cbaseline(k
∗), (13)

where Cbaseline(k∗) is Eq. (4), Eq. (5) or Eq. (6).
The fitting strategy used was to carry out a 5-parameter fit 

of Eq. (13) to the K0
SK± experimental correlation functions to ex-

tract R , λ, a, b and c for each of the six (kT range)–(charge state) 
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Fig. 3. Correlation functions divided by one of the baseline functions with fits from Eq. (13) for K0
S K+ and K0

S K− and k∗ fit range (0.0–0.6 GeV/c) for the three kT bins and 
the quadratic baseline function assumption. Statistical (lines) and the quadratic sum of the statistical and systematic (boxes) uncertainties are shown. For k∗ > 0.05 GeV/c, 
the systematic uncertainties become negligible and the boxes are no longer shown.

Fig. 4. Sample raw correlation functions for K0
S K+ showing the fitted quadratic baseline function, Eq. (4). Statistical uncertainties are shown. The scale of C(k∗) is arbitrary.

combinations. For each of these six combinations, the three base-
line functional forms, and two k∗ fit ranges, (0.0–0.6 GeV/c) and 
(0.0–0.8 GeV/c), were fit, giving six R and six λ parameter values 
for each combination. These six values were then averaged and the 
variance calculated to obtain the final values for the parameters 
and an estimate of the combined systematic uncertainties from the 
baseline assumptions and fit range, respectively.

4. Results and discussion

4.1. Fits to the experimental correlation functions

Fig. 3 shows sample correlation functions divided by the 
quadratic baseline function with fits of Eq. (13) for K0

SK± and the 
k∗ fit range (0.0–0.6 GeV/c) for the three kT bins. The fits using the 
other baseline assumptions and to the wider range (0.0–0.8 GeV/c)
are similar in quality. Comparing with the quadratic baseline, us-
ing the Gaussian baseline tends to give ∼10–20% smaller source 
parameters whereas using the exponential baseline tends to give 
∼10–20% larger source parameters. The average χ2/ndf and p-

value over all of the fits are 1.554 and 0.172, respectively. Statis-
tical (lines) and the quadratic sum of the statistical and system-
atic (boxes) uncertainties are shown. The systematic uncertainties 
were determined by varying cuts on the data (see the discus-
sion of the “cut systematic uncertainty” in the section below on 
“Systematic Uncertainties” for more details). Fig. 4 shows sample 
raw correlation functions for K0

SK+ for the three kT bins and the 
quadratic baseline function, Eq. (4), that was fit corresponding to 
the 5-parameter fits of Eq. (13) to the K0

SK+ data presented in 
Fig. 3. Statistical uncertainties on the fit parameters were obtained 
by constructing the 1σ λ vs. R contour and taking the errors to be 
at the extreme extents of the contour. A typical value of the corre-
lation coefficient is 0.642. This method gives the most conservative 
estimates of the statistical uncertainties.

The Achasov2 a0 FSI parameterization coupled with the vari-
ous baseline assumptions gives a good representation of the signal 
region of the data, i.e. reproducing the enhancement in the k∗ re-
gion 0.0–0.1 GeV/c and the small dip in the region 0.1–0.3 GeV/c. 
A good representation of the signal region was also seen to be 
the case for the Pb–Pb analysis with the Achasov2 parameteri-
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Table 2
Fit results for average R and λ showing statistical and systematic uncertainties from K0

S K± femtoscopy with pp collisions at √s = 7 TeV. The “[+/−]” in the first column 
refers to K0

S K+ or K0
S K− . See the text for the definitions of the various uncertainties.

R or λ [+/−] kT cut 
(GeV/c)

Fit 
value

Statistical 
uncert.

Fit 
systematic 
uncert.

Cut 
systematic 
uncert.

Total 
systematic 
uncert.

Total 
quadratic 
uncert.

R[+] (fm) kT < 0.85 0.905 0.063 0.243 0.033 0.245 0.253
kT > 0.85 0.788 0.077 0.168 0.031 0.171 0.188
All kT 0.922 0.048 0.188 0.038 0.192 0.198

λ[+] kT < 0.85 0.189 0.046 0.070 0.012 0.071 0.085
kT > 0.85 0.222 0.080 0.066 0.015 0.068 0.105
All kT 0.242 0.046 0.066 0.020 0.069 0.083

R[−] (fm) kT < 0.85 1.039 0.060 0.244 0.039 0.247 0.254
kT > 0.85 0.786 0.082 0.145 0.032 0.148 0.169
All kT 0.995 0.046 0.185 0.041 0.190 0.195

λ[−] kT < 0.85 0.253 0.044 0.096 0.016 0.097 0.107
kT > 0.85 0.208 0.084 0.038 0.016 0.042 0.094
All kT 0.277 0.038 0.074 0.023 0.078 0.087

zation, which has a qualitatively different k∗ dependence of the 
correlation function that is dominated by a dip at low k∗ (compare
present Fig. 3 with Fig. 2 from Ref. [2]). The enhancement seen for 
the small-R system at low k∗ is expected from Eq. (11) as a con-
sequence of the first term in the brackets that goes as 1/R2. This 
demonstrates the ability of Eq. (11) to describe the FSI in both the 
small and large size regimes as going through the a0 resonance.

4.2. Extracted R and λ parameters

The results for the extracted average R and λ parameters and 
the statistical and systematic uncertainties on these for the present 
analysis of K0

SK± femtoscopy from 7 TeV pp collisions are shown 
in Table 2. The statistical uncertainties given are the averages over 
the 6 fits for each case. As can be seen, R and λ for K0

S K+ agree 
within the statistical uncertainties with those for K0

SK− in all cases.

4.3. Systematic uncertainties

Table 2 shows the total systematic uncertainties on the ex-
tracted R and λ parameters. As is seen, for most cases the total 
systematic uncertainty is larger than the statistical uncertainty. 
The total systematic uncertainty is broken down in Table 2 into 
two main contributions, the “fit systematic uncertainty” and the 
“cut systematic uncertainty”, and is the quadratic sum of these. 
The fit systematic uncertainty is the combined systematic uncer-
tainty due to the various baseline assumptions and varying the 
k∗ fit range, as described earlier. The cut systematic uncertainty is 
the systematic uncertainty related to the various cuts made in the 
data analysis. To determine this, single particle cuts were varied by 
∼10%, and the value chosen for the minimum separation distance 
of same-sign tracks was varied by ∼20%. Taking the upper-limit 
values of the variations to be conservative, this led to additional 
errors of 4% for R and 8% for λ. As seen in the table, the fit sys-
tematic uncertainty dominates over the cut systematic uncertainty 
in all cases, demonstrating the large uncertainties in determining 
the non-femtoscopic baseline in pp collisions. The “total quadratic 
uncertainty” is the quadratic sum of the “statistical uncertainty” 
column and the “total systematic uncertainty” column.

4.4. Comparisons with K0
SK± results from Pb–Pb collisions at √

sNN = 2.76 TeV and identical-kaon results from pp collisions at √
s = 7 TeV

In this section comparisons of the present results for R and λ
with K0

SK± measurements from ALICE 2.76 TeV Pb–Pb collisions for 
0–10% centrality [2], and with identical-kaon measurements from 
ALICE 7 TeV pp collisions [4,5] are presented. Since it is seen in 
Table 2 that the extracted parameters for K0

SK+ agree within the 
statistical uncertainties with those for K0

SK− in all cases, these are 
averaged over weighted by the statistical uncertainties in the fol-
lowing figures.

Fig. 5 shows the comparison with the ALICE Pb–Pb collision 
K0

SK± measurements. The λ parameters have been divided by the 
pair purity for each case, i.e. 83% for the present pp collisions and 
88% for the Pb–Pb collisions [2], so that they can be compared 
on the same basis. It is seen that R for 0–10% centrality Pb–Pb is 
∼5 fm, and is significantly larger than the R ∼1 fm measured for 
pp collisions. This is expected since R reflects the geometric size 
of the interaction region of the collision. It is somewhat surprising 
that λ for pp collisions is seen to be significantly less than that for 
Pb–Pb collisions. There are two main factors effecting the value of 
the λ parameter: 1) the degree to which a Gaussian fits the corre-
lation function and 2) the effect of long-lived resonances diluting 
the kaon sample. For 1), it is seen in Fig. 3 for pp and in Fig. 2 of 
Ref. [2] for Pb–Pb that the Gaussian function used in the Ledincky 
equation, Eqs. (10) and (11), fits both colliding systems well, mini-
mizing the effect of 1). For 2), the K∗ decay (+ ∼50 MeV) has the 
largest influence on diluting the kaon sample, and it is unlikely 
that the multiplicity ratio of K/K∗ changes dramatically in going 
from 2.76 TeV to 7 TeV. From these arguments we might naively 
expect λ to be similar in the pp and Pb–Pb cases.

In order to properly compare the present results with the 
ALICE pp collision identical-kaon measurements, we must take 
the weighted average (weighted by their statistical uncertainties) 
over the multiplicity bins used in Refs. [4,5] since our present 
results are summed over all multiplicity. Fig. 6 shows the compar-
ison between the present results for R and λ and measurements 
from the identical-kaon femtoscopy in 7 TeV pp collisions. The R
values are seen to agree between the present analysis and the 
identical kaon analyses within the uncertainties. The λ param-
eters shown in Fig. 6 are each divided by their respective pair 
purities. Going from the lowest to the highest kT points, for the 
neutral-kaon pairs the purities are 0.88 and 0.84 [4], and for the 
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Fig. 5. R and λ parameters extracted in the present analysis from K0
SK± femtoscopy 

averaged over K0
S K+ and K0

S K− , along with a comparison with K0
S K± results from 

ALICE 2.76 TeV Pb–Pb collisions for 0–10% centrality [2]. The quadratic sum of the 
statistical and systematic uncertainties is plotted for all results as boxes and the 
statistical uncertainties are given as lines. The λ parameters have been divided by 
their respective pair purities to facilitate their comparison.

Fig. 6. R and purity-normalized λ parameters extracted in the present analysis from 
K0

S K± femtoscopy averaged over K0
S K+ and K0

S K− , along with comparisons with 
identical kaon results from ALICE 7 TeV pp collisions averaged over event multiplic-
ity. The quadratic sum of the statistical and systematic uncertainties is plotted for 
all results as boxes and the statistical uncertainties are given as lines. Also plotted 
as a blue dashed line is the simple average of the identical-kaon purity-normalized 
λ parameters.

charge-kaon pairs the purities are 0.84, 0.61, 0.79 and 1.0 [5], 
respectively. The purity-normalized λ parameters for the identi-
cal kaons are seen to scatter in a wide range between values of 

0.3–0.7, whereas the K0
SK± values are seen to lie in the narrower 

range of 0.25–0.30.
In order to help to clarify the comparison between the purity-

normalized λ values from K0
SK± and the identical-kaon results, the 

simple average over the identical kaon purity-normalized λ param-
eters is plotted as a blue dashed line in Fig. 6. As seen, the K0

SK±

values tend to be smaller than the average of the identical kaons, 
as was more significantly the case for the comparison with the 
purity-normalized λ values from Pb–Pb seen in Fig. 5, however the 
large scatter of the identical kaons makes it difficult to draw any 
strong conclusions from this comparison.

4.5. Implications from the present results for the a0 to be a tetraquark 
state

The K0
SK± FSI is described well by assuming it is due to the 

a0 resonance for both pp and Pb–Pb collisions, as seen in Fig. 3
of the present work and in Fig. 2 of Ref. [2]. The R parameters 
extracted from this method are also seen to agree within uncer-
tainties with the identical-kaon measurements for each of these 
collision systems. For Pb–Pb collisions, it was found that the λ pa-
rameters extracted from K0

SK± also agree with the corresponding 
identical-kaon measurements for Pb–Pb collisions indicating that 
the FSI between the kaons goes solely through the a0 resonance. 
The present pp collision results for λ, which are significantly lower 
than the K0

SK± values from Pb–Pb collisions seen in Fig. 5 and 
which tend to be lower than the corresponding identical-kaon val-
ues in pp collisions seen in Fig. 6, imply that the FSI for these 
collisions does not go solely through the a0 resonance, i.e. non-
resonant elastic channels and/or free-streaming are also present. 
From the arguments given in the Introduction, this is the geo-
metric effect that would be expected in the case of a tetraquark 
a0 since competing annihilation channels could open up in the 
smaller system and compete with the FSI through the a0, whereas 
for a diquark a0 the FSI should still go solely through the a0. The 
pp collision results are thus compatible with the conclusion from 
the Pb–Pb collision measurement [2] that favors the interpretation 
of the a0 resonance to be a tetraquark state.

5. Summary

In summary, femtoscopic correlations with the particle pair 
combinations K0

SK± are studied in pp collisions at 
√

s = 7 TeV for 
the first time by the LHC ALICE experiment. Correlations in the 
K0

SK± pairs are produced by final-state interactions which proceed 
through the a0 resonance. It is found that the a0 final-state in-
teraction describes the shape of the measured K0

S K± correlation 
functions well. The extracted radius and λ parameters for K0

SK− are 
found to be equal within the experimental uncertainties to those 
for K0

SK+ . Results of the present study are compared with those 
from identical-kaon femtoscopic studies also performed with pp 
collisions at 

√
s = 7 TeV by ALICE and with a recent ALICE K0

SK±

measurement in Pb–Pb collisions at √sNN = 2.76 TeV. These com-
parisons suggest that non-resonant elastic scattering channels are 
present in pp collisions, unlike in Pb–Pb collisions. It is our conclu-
sion that the present results, in combination with the ALICE Pb–Pb 
collision measurements, favor the interpretation of the a0 to be a 
tetraquark state.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration 



ALICE Collaboration / Physics Letters B 790 (2019) 22–34 29

gratefully acknowledges the resources and support provided by 
all Grid centres and the Worldwide LHC Computing Grid (WLCG) 
collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running the 
ALICE detector: A.I. Alikhanyan National Science Laboratory (Yere-
van Physics Institute) Foundation (ANSL), State Committee of Sci-
ence and World Federation of Scientists (WFS), Armenia; Austrian 
Academy of Sciences and Nationalstiftung für Forschung, Technolo-
gie und Entwicklung, Austria; Ministry of Communications and 
High Technologies, National Nuclear Research Center, Azerbaijan; 
Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Fi-
nanciadora de Estudos e Projetos (Finep) and Fundação de Amparo 
à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Sci-
ence & Technology of China (MSTC), National Natural Science Foun-
dation of China (NSFC) and Ministry of Education of China (MOEC), 
China; Ministry of Science and Education, Croatia; Centro de Apli-
caciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, 
Cuba; Ministry of Education, Youth and Sports of the Czech Repub-
lic, Czech Republic; The Danish Council for Independent Research 
Natural Sciences, the Carlsberg Foundation and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 
(HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-
erionenforschung GmbH, Germany; General Secretariat for Re-
search and Technology, Ministry of Education, Research and Re-
ligions, Greece; National Research, Development and Innovation 
Office, Hungary; Department of Atomic Energy, Government of In-
dia (DAE), Department of Science and Technology, Government of 
India (DST), University Grants Commission, Government of India 
(UGC) and Council of Scientific and Industrial Research (CSIR), In-
dia; Indonesian Institute of Sciences, Indonesia; Centro Fermi – 
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi 
and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for 
Innovative Science and Technology, Nagasaki Institute of Applied 
Science (IIST), Japan Society for the Promotion of Science (JSPS) 
KAKENHI and Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT), Japan; Consejo Nacional de Ciencia 
(CONACYT) y Tecnología, through Fondo de Cooperación Interna-
cional en Ciencia y Tecnología (FONCICYT) and Dirección General 
de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; 
The Research Council of Norway, Norway; Commission on Science 
and Technology for Sustainable Development in the South (COM-
SATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Min-
istry of Science and Higher Education and National Science Centre, 
Poland; Korea Institute of Science and Technology Information and 
National Research Foundation of Korea (NRF), Republic of Korea; 
Ministry of Education and Scientific Research, Institute of Atomic 
Physics and Romanian National Agency for Science, Technology and 
Innovation, Romania; Joint Institute for Nuclear Research (JINR), 
Ministry of Education and Science of the Russian Federation and 
National Research Centre Kurchatov Institute, Russia; Ministry of 
Education, Science, Research and Sport of the Slovak Republic, Slo-
vakia; National Research Foundation of South Africa, South Africa; 
Swedish Research Council (VR) and Knut & Alice Wallenberg Foun-
dation (KAW), Sweden; European Organization for Nuclear Re-

search, Switzerland; National Science and Technology Development 
Agency (NSDTA), Suranaree University of Technology (SUT) and Of-
fice of the Higher Education Commission under NRU project of 
Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; 
National Academy of Sciences of Ukraine, Ukraine; Science and 
Technology Facilities Council (STFC), United Kingdom; National Sci-
ence Foundation of the United States of America (NSF) and United 
States Department of Energy, Office of Nuclear Physics (DOE NP), 
United States of America.

References

[1] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008) S08002.

[2] ALICE Collaboration, S. Acharya, et al., Measuring K0
S K± interactions using 

Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 774 (2017) 64–77, arXiv:
1705 .04929 [nucl -ex].

[3] STAR Collaboration, B.I. Abelev, et al., Neutral kaon interferometry in Au+Au 
collisions at √sN N = 200 GeV, Phys. Rev. C 74 (2006) 054902, arXiv:nucl -ex /
0608012.

[4] ALICE Collaboration, B. Abelev, et al., K0
s − K0

s correlations in pp collisions at √
s = 7 TeV from the LHC ALICE experiment, Phys. Lett. B 717 (2012) 151–161, 

arXiv:1206 .2056 [hep -ex].
[5] ALICE Collaboration, B. Abelev, et al., Charged kaon femtoscopic correlations in 

pp collisions at √s = 7 TeV, Phys. Rev. D 87 (5) (2013) 052016, arXiv:1212 .
5958 [hep -ex].

[6] ALICE Collaboration, J. Adam, et al., One-dimensional pion, kaon, and proton 
femtoscopy in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 92 (5) (2015) 
054908, arXiv:1506 .07884 [nucl -ex].

[7] N.N. Achasov, A.V. Kiselev, The new analysis of the KLOE data on the φ →
ηπ0γ decay, Phys. Rev. D 68 (2003) 014006, arXiv:hep -ph /0212153.

[8] E. Santopinto, G. Galata, Spectroscopy of tetraquark states, Phys. Rev. C 75 
(2007) 045206, arXiv:hep -ph /0605333.

[9] R.L. Jaffe, Multi-quark hadrons. 1. The phenomenology of qqqq mesons, Phys. 
Rev. D 15 (1977) 267.

[10] N.N. Achasov, A.V. Kiselev, Light scalar mesons and two-kaon correlation func-
tions, Phys. Rev. D 97 (3) (2018) 036015, arXiv:1711.08777 [hep -ph].

[11] ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476 [nucl -
ex].

[12] A. Akindinov, et al., Performance of the ALICE time-of-flight detector at the 
LHC, Eur. Phys. J. Plus 128 (2013) 44.

[13] ALICE Collaboration, B. Abelev, et al., Centrality dependence of π , K, p produc-
tion in Pb–Pb collisions at √sN N = 2.76 TeV, Phys. Rev. C 88 (2013) 044910, 
arXiv:1303 .0737 [hep -ex].

[14] ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb col-
lisions at √sNN = 2.76 TeV with ALICE, Phys. Rev. C 88 (4) (2013) 044909, 
arXiv:1301.4361 [nucl -ex].

[15] J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast 
readout for ultra-high multiplicity events, Nucl. Instrum. Methods, Sect. A 622 
(2010) 316–367, arXiv:1001.1950 [physics .ins -det].

[16] ALICE Collaboration, B. Alessandro, et al., ALICE: physics performance report, 
vol. II, J. Phys. G 32 (2006) 1295–2040.

[17] T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High En-
ergy Phys. 05 (2006) 026, arXiv:hep -ph /0603175.

[18] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 
(2010) 074018, arXiv:1005 .3457 [hep -ph].

[19] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. 
Urban, GEANT Detector Description and Simulation Tool, vol. 1, CERN-W5013, 
1994, p. 1.

[20] R. Lednicky, V. Lyuboshits, Final state interaction effect on pairing correlations 
between particles with small relative momenta, Sov. J. Nucl. Phys. 35 (1982) 
770.

[21] R. Lednicky, Correlation femtoscopy, Nucl. Phys. A 774 (2006) 189–198, arXiv:
nucl -th /0510020.

[22] S. Koonin, Proton pictures of high-energy nuclear collisions, Phys. Lett. B 70 
(1977) 43–47.

[23] S. Pratt, T. Csorgo, J. Zimanyi, Detailed predictions for two pion correlations in 
ultrarelativistic heavy ion collisions, Phys. Rev. C 42 (1990) 2646–2652.

ALICE Collaboration

S. Acharya 139, F.T.-. Acosta 20, D. Adamová 93, A. Adler 74, J. Adolfsson 80, M.M. Aggarwal 98, 
G. Aglieri Rinella 34, M. Agnello 31, N. Agrawal 48, Z. Ahammed 139, S.U. Ahn 76, S. Aiola 144, 



30 ALICE Collaboration / Physics Letters B 790 (2019) 22–34

A. Akindinov 64, M. Al-Turany 104, S.N. Alam 139, D.S.D. Albuquerque 121, D. Aleksandrov 87, 
B. Alessandro 58, H.M. Alfanda 6, R. Alfaro Molina 72, Y. Ali 15, A. Alici 10,27,53, A. Alkin 2, J. Alme 22, 
T. Alt 69, L. Altenkamper 22, I. Altsybeev 111, M.N. Anaam 6, C. Andrei 47, D. Andreou 34, H.A. Andrews 108, 
A. Andronic 104,142, M. Angeletti 34, V. Anguelov 102, C. Anson 16, T. Antičić 105, F. Antinori 56, 
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