[email protected] Karatay
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ARDIS: a Swedish historical handwritten digit dataset

Kusetogullari, H.; Yavariabdi, A.; Cheddad, A.; Grahn, H.; Hall, J.
  • BibTex
  • EndNote (RIS)
Loading
Thumbnail
Date
2019
URI
http://hdl.handle.net/20.500.12498/2823
Metadata
Show full item record
Abstract
This paper introduces a new image-based handwritten historical digit dataset named Arkiv Digital Sweden (ARDIS). The images in ARDIS dataset are extracted from 15,000 Swedish church records which were written by different priests with various handwriting styles in the nineteenth and twentieth centuries. The constructed dataset consists of three single-digit datasets and one-digit string dataset. The digit string dataset includes 10,000 samples in red–green–blue color space, whereas the other dattasets contain 7600 single-digit images in different color spaces. An extensive analysis of machine learning methods on several digit datasets is carried out. Additionally, correlation between ARDIS and existing digit datasets Modified National Institute of Standards and Technology (MNIST) and US Postal Service (USPS) is investigated. Experimental results show that machine learning algorithms, including deep learning methods, provide low recognition accuracy as they face difficulties when trained on existing datasets and tested on ARDIS dataset. Accordingly, convolutional neural network trained on MNIST and USPS and tested on ARDIS provide the highest accuracies 58.80 % and 35.44 % , respectively. Consequently, the results reveal that machine learning methods trained on existing datasets can have difficulties to recognize digits effectively on our dataset which proves that ARDIS dataset has unique characteristics. This dataset is publicly available for the research community to further advance handwritten digit recognition algorithms. © 2019, The Author(s)....  Show more  Show less
Item type
Article
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [475]

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini
 

 

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rightsThis CollectionBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rights

My Account

LoginRegister

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini