[email protected] Karatay
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active vibration control of a smart beam by a tuner-based PID controller

Gülbahçe, E.; Çelik, M.
  • BibTex
  • EndNote (RIS)
Loading
Thumbnail
Date
2018
URI
http://hdl.handle.net/20.500.12498/2831
Metadata
Show full item record
Abstract
In this study, a tuner-based Proportional-Integral-Derivative controller is proposed to actively control a smart beam. In numerical simulation environment, the performance of the tuner-based PID and a positive position feedback controller in damping the forced vibrations of a smart beam using a piezoelectric actuator are investigated. The finite element method is used to numerically model the smart beam by exporting the state-space matrices that are characterized with regard to the active vibrattion control loop. Two types of vibration data with sine tones are comprised in order to stimulate behavior of the proposed system. The first one is the composition of the first and second natural frequencies of smart beam. The second one is the composition of the first to the third natural frequencies of smart beam. In the tuner-based PID, controller design tuner toolbox is used to obtain suitable PID coefficients. In this simulation environment active vibration control based on the proposed tuner-based PID and on positive position feedback controllers is studied and compared. Additionally, the controller power consumption levels are determined for the proposed controller design. Numerical results show that the overall tuner-based PID control performance of flexible smart beam system is more effective than the positive position feedback controlled system for forced vibration control. Also, the tuner-based PID controller provides more energy savings than the positive position feedback controller. © The Author(s) 2018....  Show more  Show less
Item type
Article
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [475]

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini
 

 

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rightsThis CollectionBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rights

My Account

LoginRegister

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini