[email protected] Karatay
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   [email protected] Karatay
  • ARAŞTIRMA ÇIKTILARI
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying Trolls and Determining Terror Awareness Level in Social Networks Using a Scalable Framework

Mutlu, Busra and Mutlu, Merve and Oztoprak, Kasim and Dogdu, Erdogan
  • BibTex
  • EndNote (RIS)
Loading
Thumbnail
Date
2016
URI
http://hdl.handle.net/20.500.12498/4712
Metadata
Show full item record
Abstract
Trolls in social media are `malicious' users trying to propagate an opinion or distort the general perceptions. Identifying trolls in social media is a task of interest for many big data applications since data cannot be analyzed effectively without eliminating such users from the crowd. In this paper, we present a solution for troll detection and also the results of measuring terror awareness among social media users. We used Twitter platform only, and applied several machine learning techniquees and big data methodologies. For machine learning we used k-Nearest Neighbour (kNN), Naive Bayes, and C4.5 decision tree algorithms. Hadoop/Mahout and Hadoop/Hive platforms were used for big data processing. Our tests show that C4.5 has a better performance on troll detection....  Show more  Show less
Item type
Proceedings Paper
Collections
  • WoS İndeksli Yayınlar Koleksiyonu [274]

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini
 

 

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rightsThis CollectionBy Issue DateAuthorsTitlesSubjectsBy lcAuthorBy TypeBy publisherBy languageBy rights

My Account

LoginRegister

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini