Basit öğe kaydını göster

dc.contributor.authorYILDIZ, Hüseyin Bekir
dc.contributor.authorBEZGİN ÇARBAŞ, Buket
dc.contributor.authorSÖNMEZOĞLU, Savaş
dc.contributor.authorKARAMAN, Mustafa
dc.contributor.authorTOPPARE, Levent
dc.date.accessioned2019-07-08T13:08:52Z
dc.date.available2019-07-08T13:08:52Z
dc.date.issued2017-09-07
dc.identifier.citationDOI: 10.1016/j.ijhydene.2016.04.249en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12498/698
dc.description.abstractThis article describes the construction of photoelectrochemical cell system splitting water into hydrogen and oxygen using UV–vis light under constant applied voltage. Oligoaniline-crosslinked 2-(4-aminobenzyl)malonic acid functionalized IrO2·nH2O nanoparticles and visible light absorbing dye, [Ru(bpy)2(bpyCONHArNH2)+2] arrays on titanium dioxide (TiO2) photonic crystals modified electrodes were used as photoanode, and nanostructures based on bonding of Pt nanoparticles by using electropolymerization on poly 4-(2,5-di(thiophene-2-il)-1H-pyrrol-1-il)benzenamine P(SNS-NH2) conducting polymer modified gold electrode acted as cathode. Each component in anode and cathode of the system was characterized successfully using the methods related. Some optimization studies such as the molar concentration ratio of [Ru(bpy)2(bpyCONHArNH2)+2] dye to IrO2·nH2O nanoparticles, the optimum cycle number of each components and thickness of TiO2 film were performed in order to investigate the system performance. Furthermore, the photocurrent generation capacity of the photoanode against oxygen resulting and UV stability experiments of photoanode were also investigated. After obtained all necessary informations and improvements of the system, the cell was constructed, and corresponding hydrogen gas evolution from water splitting was calculated as 1.25 × 10−8 mol/cm2 by using a gas chromatography (GC). The cell generated a photocurrent with a quantum yield of 3.5%.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Hydrogen Energy (Elsevier)en_US
dc.subjectPhotoelectrochemical Cellen_US
dc.subjectConjugated Polymeren_US
dc.subjectOxidation of Wateren_US
dc.subjectMetal Oxidesen_US
dc.subjectVisible Light Absorbing Dyesen_US
dc.titleA photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)2(bpyCONHArNH2)]+2 dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrodeen_US
dc.typeMakaleen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster