Measurement of jet radial profiles in Pb–Pb collisions at sNN = 2.76 TeV

View/ Open
Date
2019-07-08Author
KARASU UYSAL, Ayben
ALICE Collaboration
Metadata
Show full item recordAbstract
The jet radial structure and particle transverse momentum (pT) composition within jets are presented in centrality-selected Pb–Pb collisions at √sNN = 2.76 TeV. Track-based jets, which are also called charged jets, were reconstructed with a resolution parameter of R = 0.3 at midrapidity |ηch jet| < 0.6 for transverse momenta pT, ch jet = 30–120 GeV/c. Jet–hadron correlations in relative azimuth and pseudorapidity space (φ,η) are measured to study the distribution of the associated particles around the jet axis for different pT,assoc-ranges between 1 and 20 GeV/c. The data in Pb–Pb collisions are compared to reference distributions for pp collisions, obtained using embedded PYTHIA simulations. The number of high-pT associate particles (4 < pT,assoc < 20 GeV/c) in Pb–Pb collisions is found to be suppressed compared to the reference by 30 to 10%, depending on centrality. The radial particle distribution relative to the jet axis shows a moderate modification in Pb–Pb collisions with respect to PYTHIA. High-pT associate particles are slightly more collimated in Pb–Pb collisions compared to the reference, while low-pT associate particles tend to be broadened. The results, which are presented for the first time down to pT, ch jet = 30 GeV/c in Pb–Pb collisions, are compatible with both previous jet–hadron-related measurements from the CMS Collaboration and jet shape measurements from the ALICE Collaboration at higher pT, and add further support for the established picture of in-medium parton energy loss.
Collections

DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..