• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Hybrid Model For The Prediction Of Aluminum Foil Output Thickness İn Cold Rolling Process

Thumbnail
Göster/Aç
A hybrid model for the prediction of aluminum foil output thickne.pdf (591.4Kb)
Tarih
2019
Yazar
ÖZTÜRK, Ali
ŞEHERLİ, Rıfat
Üst veri
Tüm öğe kaydını göster
Özet
This study proposes a hybrid model composed of multiple prediction algorithms and an autoregressive moving average (ARMA) module for the thickness prediction. In order to attain higher accuracy, the prediction algorithms were globally combined by simple voting to reduce the effect of the inductive bias imposed by each algorithm on the dataset. The global multiexpert combination (GMEC) system included the multilayer perceptron neural network (MLPNN), radial basis function network (RBFN), multiple linear regression (MLR), and support vector machines (SVM) algorithms. The proposed hybrid model extends the GMEC system by integrating an ARMA module for the output. On the test dataset, the mean absolute error (MEA) and root mean squared error (RMSE) were better for the hybrid model than the GMEC system. The GMEC system had approximately twice better performance than the MLPNN, which was the best among the learners. The performance was significantly improved via the hybrid model in terms of correlation coefficient (R). The results suggested that the proposed hybrid model can be used for more accurate and precise prediction of aluminum foil output thickness. © TÜBİTAK
Bağlantı
http://hdl.handle.net/20.500.12498/2816
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [527]





Creative Commons License
DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2022  LYRASIS
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Yönerge | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2022  LYRASIS
İletişim | Geri Bildirim
Theme by 
Atmire NV