Dspace@KTO Karatay
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Dspace@KTO Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   Dspace@KTO Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of linked data sources using semantic scoring

Yumusak, S.; Dogdu, E.; Kodaz, H.
  • BibTex
  • EndNote (RIS)
Loading
Thumbnail
Date
2018
URI
http://hdl.handle.net/20.500.12498/2912
Metadata
Show full item record
Abstract
Linked data sets are created using semantic Web technologies and they are usually big and the number of such datasets is growing. The query execution is therefore costly, and knowing the content of data in such datasets should help in targeted querying. Our aim in this paper is to classify linked data sets by their knowledge content. Earlier projects such as LOD Cloud, LODStats, and SPARQLES analyze linked data sources in terms of content, availability and infrastructure. In these projects, linkked data sets are classified and tagged principally using VoID vocabulary and analyzed according to their content, availability and infrastructure. Although all linked data sources listed in these projects appear to be classified or tagged, there are a limited number of studies on automated tagging and classification of newly arriving linked data sets. Here, we focus on automated classification of linked data sets using semantic scoring methods. We have collected the SPARQL endpoints of 1,328 unique linked datasets from Datahub, LOD Cloud, LODStats, SPARQLES, and SpEnD projects. We have then queried textual descriptions of resources in these data sets using their rdfs:comment and rdfs:label property values. We analyzed these texts in a similar manner with document analysis techniques by assuming every SPARQL endpoint as a separate document. In this regard, we have used WordNet semantic relations library combined with an adapted term frequency-inverted document frequency (tfidf) analysis on the words and their semantic neighbours. In WordNet database, we have extracted information about comment/label objects in linked data sources by using hypernym, hyponym, homonym, meronym, region, topic and usage semantic relations. We obtained some significant results on hypernym and topic semantic relations; we can find words that identify data sets and this can be used in automatic classification and tagging of linked data sources. By using these words, we experimented different classifiers with different scoring methods, which results in better classification accuracy results. Copyright © 2018 The Institute of Electronics, Information and Communication Engineers...  Show more  Show less
Item type
Conference Paper
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [843]

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini
 

 


sherpa/romeo

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini