• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models

Thumbnail
View/Open
Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models.pdf (218.3Kb)
Date
2017
Author
KİŞİ, Özgür
PARMAR, Kulwinder
SONI,Kirti
DEMİR, Vahdettin
Metadata
Show full item record
Abstract
This study investigates the applicability of three different soft computing methods, least square support vector regression (LSSVR), multivariate adaptive regression splines (MARS), and M5 Model Tree (M5-Tree), in forecasting SO2 concentration. These models were applied to monthly data obtained from Janakpuri, Nizamuddin, and Shahzadabad, located in Delhi, India. The models were compared with each other using the cross validation method with respect to root mean square error, mean absolute error, and correlation coefficient. According to the comparison, LSSVR provided better accuracy than the other models, while the MARS model was found to be the second best model in forecasting monthly SO2 concentration. Results indicated that the applied models gave better forecasting accuracy in Janakpuri station than the other stations. The results were also compared with previous studies and satisfactory results were obtained from three methods in modeling SO2 concentrations. © 2017, Springer Science+Business Media Dordrecht.
URI
http://hdl.handle.net/20.500.12498/2938
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [527]





Creative Commons License
DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Yönerge | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV