Dspace@KTO Karatay
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Dspace@KTO Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   Dspace@KTO Karatay
  • ARAŞTIRMA ÇIKTILARI
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)2(bpyCONHArNH2)]+2 dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrode

Yildiz, H.B.; Carbas, B.B.; Sonmezoglu, S.; Karaman, M.; Toppare, L.
  • BibTex
  • EndNote (RIS)
Loading
Thumbnail
Date
2016
URI
http://hdl.handle.net/20.500.12498/3005
Metadata
Show full item record
Abstract
This article describes the construction of photoelectrochemical cell system splitting water into hydrogen and oxygen using UV–vis light under constant applied voltage. Oligoaniline-crosslinked 2-(4-aminobenzyl)malonic acid functionalized IrO2·nH2O nanoparticles and visible light absorbing dye, [Ru(bpy)2(bpyCONHArNH2)+2] arrays on titanium dioxide (TiO2) photonic crystals modified electrodes were used as photoanode, and nanostructures based on bonding of Pt nanoparticles by using electropolymerizzation on poly 4-(2,5-di(thiophene-2-il)-1H-pyrrol-1-il)benzenamine P(SNS-NH2) conducting polymer modified gold electrode acted as cathode. Each component in anode and cathode of the system was characterized successfully using the methods related. Some optimization studies such as the molar concentration ratio of [Ru(bpy)2(bpyCONHArNH2)+2] dye to IrO2·nH2O nanoparticles, the optimum cycle number of each components and thickness of TiO2 film were performed in order to investigate the system performance. Furthermore, the photocurrent generation capacity of the photoanode against oxygen resulting and UV stability experiments of photoanode were also investigated. After obtained all necessary informations and improvements of the system, the cell was constructed, and corresponding hydrogen gas evolution from water splitting was calculated as 1.25 × 10−8 mol/cm2 by using a gas chromatography (GC). The cell generated a photocurrent with a quantum yield of 3.5%. © 2016 Hydrogen Energy Publications LLC...  Show more  Show less
Item type
Article
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [843]

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini
 

 


sherpa/romeo

Browse

Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

- KTO Karatay Kutuphanesi
- KTO Karatay Universitesi
- Contact Us / Send Feedback
DSpace software
Gemini