Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at sNN = 2.76 TeV

The quark gluon plasma produced in ultrarelativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < p jet T < 40 GeV/c as a function of the associated particle momentum. The reaction plane fit method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at √sNN = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable.

Erişime Açık
Görüntülenme
4
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
24 Nisan 2024 03:07
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at sNN = 2.76 TeV
Yayın Türü
(dc.type)
Diğer
Yazar/lar
(dc.contributor.author)
KARASU UYSAL, Ayben
Yazar/lar
(dc.contributor.author)
ALICE Collaboration
Atıf Dizini
(dc.source.database)
Wos
Atıf Dizini
(dc.source.database)
Scopus
Yayın Tarihi
(dc.date.issued)
2020
Kayıt Giriş Tarihi
(dc.date.accessioned)
2022-03-05T13:19:16Z
Açık Erişim tarihi
(dc.date.available)
2022-03-05T13:19:16Z
Özet
(dc.description.abstract)
The quark gluon plasma produced in ultrarelativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < p jet T < 40 GeV/c as a function of the associated particle momentum. The reaction plane fit method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at √sNN = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable.
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/5364
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms