Measurement of the cross sections of Ξ0c and Ξ+c baryons and branching-fraction ratio BR(Ξ0c→Ξ−e+νe)/BR(Ξ0c→Ξ−π+) in pp collisions at 13 TeV

  • Yazar/lar KARASU UYSAL, Ayben
    ALICE Collaboration
  • Yayın Türü Diğer
  • Yayın Tarihi 2021
  • DOI Numarası https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.272001
  • Tek Biçim Adres http://hdl.handle.net/20.500.12498/5395

The pT-differential cross sections of prompt charm-strange baryons Ξ0c and Ξ+c were measured at midrapidity (|y|<0.5) in proton−proton (pp) collisions at a centre-of-mass energy s√=13 TeV with the ALICE detector at the LHC. The Ξ0c baryon was reconstructed via both the semileptonic decay (Ξ−e+νe) and the hadronic decay (Ξ−π+) channels. The Ξ+c baryon was reconstructed via the hadronic decay (Ξ−π+π+) channel. The branching-fraction ratio BR(Ξ0c→Ξ−e+νe)/BR(Ξ0c→Ξ−π+)= 1.38 ± 0.14 (stat) ± 0.22 (syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pT) dependence of the Ξ0c- and Ξ+c-baryon production relative to the D0-meson and to the Σ0,+,++c- and Λ+c-baryon production are reported. The baryon-to-meson ratio increases towards low pT up to a value of approximately 0.3. The measurements are compared with various models that take different hadronisation mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronisation in electron−positron (e+e−) and hadronic collisions.

Erişime Açık
Görüntülenme
4
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
20 Nisan 2024 04:16
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Measurement of the cross sections of Ξ0c and Ξ+c baryons and branching-fraction ratio BR(Ξ0c→Ξ−e+νe)/BR(Ξ0c→Ξ−π+) in pp collisions at 13 TeV
Yayın Türü
(dc.type)
Diğer
Yazar/lar
(dc.contributor.author)
KARASU UYSAL, Ayben
Yazar/lar
(dc.contributor.author)
ALICE Collaboration
DOI Numarası
(dc.identifier.doi)
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.272001
Atıf Dizini
(dc.source.database)
Wos
Atıf Dizini
(dc.source.database)
Scopus
Yayın Tarihi
(dc.date.issued)
2021
Kayıt Giriş Tarihi
(dc.date.accessioned)
2022-03-05T13:28:56Z
Açık Erişim tarihi
(dc.date.available)
2022-03-05T13:28:56Z
Özet
(dc.description.abstract)
The pT-differential cross sections of prompt charm-strange baryons Ξ0c and Ξ+c were measured at midrapidity (|y|<0.5) in proton−proton (pp) collisions at a centre-of-mass energy s√=13 TeV with the ALICE detector at the LHC. The Ξ0c baryon was reconstructed via both the semileptonic decay (Ξ−e+νe) and the hadronic decay (Ξ−π+) channels. The Ξ+c baryon was reconstructed via the hadronic decay (Ξ−π+π+) channel. The branching-fraction ratio BR(Ξ0c→Ξ−e+νe)/BR(Ξ0c→Ξ−π+)= 1.38 ± 0.14 (stat) ± 0.22 (syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pT) dependence of the Ξ0c- and Ξ+c-baryon production relative to the D0-meson and to the Σ0,+,++c- and Λ+c-baryon production are reported. The baryon-to-meson ratio increases towards low pT up to a value of approximately 0.3. The measurements are compared with various models that take different hadronisation mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronisation in electron−positron (e+e−) and hadronic collisions.
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/5395
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms