Publication Preview Source Estimation of disease progression for ischemic heart disease using latent Markov with covariates

Contemporaneous monitoring of disease progression, in addition to early diagnosis, is important for the treatment of patients with chronic conditions. Chronic disease‐related factors are not easily tractable, and the existing data sets do not clearly reflect them, making diagnosis difficult. The primary issue is that databases maintained by health care, insurance, or governmental organizations typically do not contain clinical information and instead focus on patient appointments and demographic profiles. Due to the lack of thorough information on potential risk factors for a single patient, investigations on the nature of disease are imprecise. We suggest the use of a latent Markov model with variables in a latent process because it enables the panel analysis of many forms of data. The purpose of this study is to evaluate unobserved factors in ischemic heart disease (IHD) using longitudinal data from electronic health records. Based on the results we designate states as healthy, light, moderate, and severe to represent stages of disease progression. This study demonstrates that gender, patient age, and hospital visit frequency are all significant factors in the development of the disease. Females acquire IHD more rapidly than males, frequently developing from moderate and severe disease. In addition, it demonstrates that individuals under the age of 20 bypass the light state of IHD and proceed directly to the moderate state.

Görüntülenme
3
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
09 Nisan 2024 12:55
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Publication Preview Source Estimation of disease progression for ischemic heart disease using latent Markov with covariates
Yayın Türü
(dc.type)
Makale
Yazar/lar
(dc.contributor.author)
OFLAZ, Zarina
Yazar/lar
(dc.contributor.author)
YOZGATLIGİL, Ceylan
Yazar/lar
(dc.contributor.author)
KESTEL, Sevtap
Atıf Dizini
(dc.source.database)
Diğer
Konu Başlıkları
(dc.subject)
Ischemic Heart Disease
Konu Başlıkları
(dc.subject)
Latent Markov
Konu Başlıkları
(dc.subject)
Longitudinal Data
Konu Başlıkları
(dc.subject)
Gender
Konu Başlıkları
(dc.subject)
Age
Konu Başlıkları
(dc.subject)
Disease Progression
Konu Başlıkları
(dc.subject)
Electronic Health Records
Yayıncı
(dc.publisher)
Statistical Analysis and Data Mining
Yayın Tarihi
(dc.date.issued)
2022
Kayıt Giriş Tarihi
(dc.date.accessioned)
2023-03-09T14:26:53Z
Açık Erişim tarihi
(dc.date.available)
2023-03-09T14:26:53Z
Özet
(dc.description.abstract)
Contemporaneous monitoring of disease progression, in addition to early diagnosis, is important for the treatment of patients with chronic conditions. Chronic disease‐related factors are not easily tractable, and the existing data sets do not clearly reflect them, making diagnosis difficult. The primary issue is that databases maintained by health care, insurance, or governmental organizations typically do not contain clinical information and instead focus on patient appointments and demographic profiles. Due to the lack of thorough information on potential risk factors for a single patient, investigations on the nature of disease are imprecise. We suggest the use of a latent Markov model with variables in a latent process because it enables the panel analysis of many forms of data. The purpose of this study is to evaluate unobserved factors in ischemic heart disease (IHD) using longitudinal data from electronic health records. Based on the results we designate states as healthy, light, moderate, and severe to represent stages of disease progression. This study demonstrates that gender, patient age, and hospital visit frequency are all significant factors in the development of the disease. Females acquire IHD more rapidly than males, frequently developing from moderate and severe disease. In addition, it demonstrates that individuals under the age of 20 bypass the light state of IHD and proceed directly to the moderate state.
Yayın Dili
(dc.language.iso)
en
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/5960
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms