• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb–Pb collisions at √sNN = 2.76 TeV

Thumbnail
View/Open
1-s2.0-S0370269318304982-main.pdf (1.485Mb)
Date
2018
Author
KARASU UYSAL, Ayben
ALICE Collaboration
Metadata
Show full item record
Abstract
Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum kT for different collision centralities in Pb–Pb collisions at √sNN = 2.76 TeV. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed- out at freeze out.
URI
https://hdl.handle.net/20.500.12498/661
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [527]
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar [261]
  • WoS İndeksli Yayınlar Koleksiyonu [495]





Creative Commons License
DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Yönerge | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV