• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)2(bpyCONHArNH2)]+2 dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrode

Thumbnail
View/Open
Int. J. Hydrogen Energy.pdf (2.573Mb)
Date
2017-09-07
Author
YILDIZ, Hüseyin Bekir
BEZGİN ÇARBAŞ, Buket
SÖNMEZOĞLU, Savaş
KARAMAN, Mustafa
TOPPARE, Levent
Metadata
Show full item record
Abstract
This article describes the construction of photoelectrochemical cell system splitting water into hydrogen and oxygen using UV–vis light under constant applied voltage. Oligoaniline-crosslinked 2-(4-aminobenzyl)malonic acid functionalized IrO2·nH2O nanoparticles and visible light absorbing dye, [Ru(bpy)2(bpyCONHArNH2)+2] arrays on titanium dioxide (TiO2) photonic crystals modified electrodes were used as photoanode, and nanostructures based on bonding of Pt nanoparticles by using electropolymerization on poly 4-(2,5-di(thiophene-2-il)-1H-pyrrol-1-il)benzenamine P(SNS-NH2) conducting polymer modified gold electrode acted as cathode. Each component in anode and cathode of the system was characterized successfully using the methods related. Some optimization studies such as the molar concentration ratio of [Ru(bpy)2(bpyCONHArNH2)+2] dye to IrO2·nH2O nanoparticles, the optimum cycle number of each components and thickness of TiO2 film were performed in order to investigate the system performance. Furthermore, the photocurrent generation capacity of the photoanode against oxygen resulting and UV stability experiments of photoanode were also investigated. After obtained all necessary informations and improvements of the system, the cell was constructed, and corresponding hydrogen gas evolution from water splitting was calculated as 1.25 × 10−8 mol/cm2 by using a gas chromatography (GC). The cell generated a photocurrent with a quantum yield of 3.5%.
URI
https://hdl.handle.net/20.500.12498/698
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [527]
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar [261]
  • WoS İndeksli Yayınlar Koleksiyonu [495]





Creative Commons License
DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Yönerge | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV