• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
  •   DSpace Home
  • FAKÜLTELER
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Metalurji ve Malzeme Mühendisliği
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Glucose Biosensors: Whole Cell Microbial and Enzymatic Determination Based on 10-(4H-Dithieno[3,2-b:2′,3′-d]Pyrrol-4-yl)Decan-1-Amine Interfaced Glassy Carbon Electrodes

Thumbnail
View/Open
Analytical Letters (1.633Mb)
Date
2019-05-03
Author
ÇEVİK, Emre
CERİT, Alaaddin
TOMBULOĞLU, Hüseyin
SABİT, Hussein
YILDIZ, Hüseyin Bekir
Metadata
Show full item record
Abstract
The fabrication of amperometric biosensors based on whole cell Gluconobacter oxydans DSMZ 2343 (G. oxydans) and glucose oxidase (GOx) was performed for the detection of glucose. Glassy carbon electrodes (GCE) were coated with a 10-(4H-dithiyeno [3,2-b:2’,3’-d]pyroll-4-il)decan-1-amine (DTP-alkyl-NH2) polymer using an electropolymerization method and the formed interface was used to connect the bacteria and the enzyme to the electrode. The transfer of electrons from enzyme to electrode was successfully demonstrated by the biocatalytic activity and unique morphology of the conducting polymer. Characterization of the biosensors was assessed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. The detection limits of the enzyme and microbial based biosensors for glucose were 0.022 and 0.081 mM, respectively. The broad linear dynamic ranges of the GOx and G. oxydans biosensors were observed to be 0.045–50.0 and 0.19–50.0 mM, respectively. The analytical performances of biosensors were compared according to the following figures of merit: detection limits, limits of quantification, pH and current response time. In addition, to demonstrate the applicability of the biosensors, real-time measurements and recovery studies were evaluated.
URI
https://hdl.handle.net/20.500.12498/721
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [527]
  • Web of Science ve Scopus Atıf Dizinlerindeki Yayınlar [261]
  • WoS İndeksli Yayınlar Koleksiyonu [495]





Creative Commons License
DSpace@Karatay by Karatay University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Yönerge | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV