Accuracy Comparison of CNN Networks on GTSRB Dataset

In this era, interpreting and processing the data of traffic signs has crucial importance for improving autonomous car technology. In this respect, the relationship between the recognition of traffic signs and industrial applications is highly relevant. Although real-world systems have reached that related market and several academic studies on this topic have been published, regular objective comparisons of different algorithmic approaches are missing due to the lack of freely available benchmark datasets. From this point of view, we compare the AlexNET, DarkNET-53, and EfficientNET-b0 convolutional neural network (CNN) algorithms according to validation performance on the German Traffic Signs Recognition Benchmark (GTSRB) dataset. Considering the equal training and test conditions 70% of data as training, 15% of data as training validation, and 15% of data were chosen as test data. Experimental results show us that EfficientNETb0 architecture has 98.64%, AlexNET architecture has 97.45% and DarkNet-53 architecture has 94.69% accuracy performance.

Erişime Açık
Görüntülenme
148
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
18 Eylül 2024 17:01
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Accuracy Comparison of CNN Networks on GTSRB Dataset
Yayın Türü
(dc.type)
Makale
Yazar/lar
(dc.contributor.author)
AY, Gökberk
Yazar/lar
(dc.contributor.author)
DURDU, Akif
Yazar/lar
(dc.contributor.author)
NESİMİOĞLU, Barış Samim
Atıf Dizini
(dc.source.database)
Diğer
Konu Başlıkları
(dc.subject)
AlexNET
Konu Başlıkları
(dc.subject)
CNN
Konu Başlıkları
(dc.subject)
DarkNET-53
Konu Başlıkları
(dc.subject)
EfficientNET-b0
Konu Başlıkları
(dc.subject)
GTSRB
Konu Başlıkları
(dc.subject)
Traffic Sign Classification
Yayın Tarihi
(dc.date.issued)
2022
Kayıt Giriş Tarihi
(dc.date.accessioned)
2023-03-02T09:26:10Z
Açık Erişim tarihi
(dc.date.available)
2023-03-02T09:26:10Z
Özet
(dc.description.abstract)
In this era, interpreting and processing the data of traffic signs has crucial importance for improving autonomous car technology. In this respect, the relationship between the recognition of traffic signs and industrial applications is highly relevant. Although real-world systems have reached that related market and several academic studies on this topic have been published, regular objective comparisons of different algorithmic approaches are missing due to the lack of freely available benchmark datasets. From this point of view, we compare the AlexNET, DarkNET-53, and EfficientNET-b0 convolutional neural network (CNN) algorithms according to validation performance on the German Traffic Signs Recognition Benchmark (GTSRB) dataset. Considering the equal training and test conditions 70% of data as training, 15% of data as training validation, and 15% of data were chosen as test data. Experimental results show us that EfficientNETb0 architecture has 98.64%, AlexNET architecture has 97.45% and DarkNet-53 architecture has 94.69% accuracy performance.
Yayın Dili
(dc.language.iso)
eng
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/5932
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms