Hardware implementation of a scale and rotation invariant object detection algorithm on FPGA for real-time applications

A hardware implementation of a computationally light, scale, and rotation invariant method for shape detection on FPGA is devised. The method is based on histogram of oriented gradients (HOG) and average magnitude difference function (AMDF). AMDF is used as a decision module that measures the similarity/dissimilarity between HOG vectors of an image in order to classify the object. In addition, a simulation environment implemented on MATLAB is developed in order to overcome the time-consuming and tedious process of hardware verification on the FPGA platform. The simulation environment provides specific tools to quickly implement the proposed methods. It is shown that the simulator is able to produce exactly the same results as those obtained from FPGA implementation. The results indicate that the proposed approach leads to a shape detection method that is computationally light, scale, and rotation invariant, and, therefore, suitable for real-time industrial and robotic vision applications. © 2016 TÜBİTAK.

Erişime Açık
Görüntülenme
60
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
10 Ekim 2024 11:50
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
ISSN
(dc.identifier.issn)
13000632 (ISSN)
Yayıncı
(dc.publisher)
Turkiye Klinikleri Journal of Medical Sciences
Eser Adı
(dc.title)
Hardware implementation of a scale and rotation invariant object detection algorithm on FPGA for real-time applications
Özet
(dc.description.abstract)
A hardware implementation of a computationally light, scale, and rotation invariant method for shape detection on FPGA is devised. The method is based on histogram of oriented gradients (HOG) and average magnitude difference function (AMDF). AMDF is used as a decision module that measures the similarity/dissimilarity between HOG vectors of an image in order to classify the object. In addition, a simulation environment implemented on MATLAB is developed in order to overcome the time-consuming and tedious process of hardware verification on the FPGA platform. The simulation environment provides specific tools to quickly implement the proposed methods. It is shown that the simulator is able to produce exactly the same results as those obtained from FPGA implementation. The results indicate that the proposed approach leads to a shape detection method that is computationally light, scale, and rotation invariant, and, therefore, suitable for real-time industrial and robotic vision applications. © 2016 TÜBİTAK.
Yayın Tarihi
(dc.date.issued)
2016
Kayıt Giriş Tarihi
(dc.date.accessioned)
2020-08-07T12:58:48Z
Açık Erişim tarihi
(dc.date.available)
2020-08-07T12:58:48Z
Yayın Dili
(dc.language.iso)
eng
Konu Başlıkları
(dc.subject)
Average Magnitude Difference Function
Konu Başlıkları
(dc.subject)
Image Processing
Konu Başlıkları
(dc.subject)
Histogram of Oriented Gradients
Yayın Türü
(dc.type)
Makale
Yazar/lar
(dc.contributor.author)
PEKER, Murat
Yazar/lar
(dc.contributor.author)
ALTUN, Halis
Yazar/lar
(dc.contributor.author)
KARAKAYA, Fuat
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/3066
DOI Numarası
(dc.identifier.doi)
10.3906/elk-1408-187
Atıf Dizini
(dc.source.database)
Scopus
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms