
758
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

PAPER Special Section on Data Engineering and Information Management

SpEnD: Linked Data SPARQL Endpoints Discovery Using Search
Engines∗

Semih YUMUSAK†a), Student Member, Erdogan DOGDU††, Halife KODAZ†††, Andreas KAMILARIS††††,
and Pierre-Yves VANDENBUSSCHE†††††, Nonmembers

SUMMARY Linked data endpoints are online query gateways to se-
mantically annotated linked data sources. In order to query these data
sources, SPARQL query language is used as a standard. Although a linked
data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides
a platform for federated online querying and data linking methods. For
linked data consumers, SPARQL endpoint availability and discovery are
crucial for live querying and semantic information retrieval. Current stud-
ies show that availability of linked datasets is very low, while the locations
of linked data endpoints change frequently. There are linked data respsito-
ries that collect and list the available linked data endpoints or resources. It is
observed that around half of the endpoints listed in existing repositories are
not accessible (temporarily or permanently offline). These endpoint URLs
are shared through repository websites, such as Datahub.io, however, they
are weakly maintained and revised only by their publishers. In this study,
a novel metacrawling method is proposed for discovering and monitoring
linked data sources on the Web. We implemented the method in a proto-
type system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts
with a “search keyword” discovery process for finding relevant keywords
for the linked data domain and specifically SPARQL endpoints. Then, the
collected search keywords are utilized to find linked data sources via pop-
ular search engines (Google, Bing, Yahoo, Yandex). By using this method,
most of the currently listed SPARQL endpoints in existing endpoint repos-
itories, as well as a significant number of new SPARQL endpoints, have
been discovered. We analyze our findings in comparison to Datahub col-
lection in detail.
key words: linked data, semantic Web, SPARQL endpoint, endpoint dis-
covery, metasearch, knowledge graph

1. Introduction

Semantic Web standards and technologies [1] are being used
widely in today’s Web. “Linked data” is a term referring
to large structured data sources that conform to Semantic
Web standards, such as the Resource Description Frame-
work (RDF) data model. Linked data sources are the main

Manuscript received June 29, 2016.
Manuscript revised November 6, 2016.
Manuscript publicized January 17, 2017.
†The author is with Computer Eng. Dept., KTO Karatay Univ.,

Turkey.
††The author is with Computer Eng. Dept., Cankaya University,

Turkey.
†††The author is with Computer Eng. Dept., Selcuk University,

Turkey.
††††The author is with Insight Research Centre for Data Analytics,

Turkey.
†††††The author is with the Fujitsu Ireland Limited, Ireland.

∗This research is supported by The Scientific and Tech-
nological research council of Turkey with grant number
1059B141500052.

a) E-mail: semih.yumusak@karatay.edu.tr
DOI: 10.1587/transinf.2016DAP0025

Semantic Web data sources on the current Web and they are
used in many applications, from enhancing search results to
open knowledge extraction. As Semantic Web technologies
are getting more popular in use, linked data sources are con-
tinuously growing in number and size. Recent statistics [2]
list more than one thousand data sets and billions of triples
in the cloud.

The quality of a linked data source is highly dependent
on its availability and content. The availability and content
quality for linked data sources are being tracked by a num-
ber of projects [2], [3]. It is clear that linked data sources
are not always alive. Sometimes they do not respond due
to request overload, maintenance, or they may go offline
permanently. Therefore, it is critical to monitor, report and
provide verification about these data sources’ accessibility
continuously, if the future Web aims to utilize these data
sources online and in real-time. It is also critical to de-
liver information about the quality, correctness, integrity,
and conformance of these datasets [4]. Although there are
existing projects for monitoring, reporting and analysis of
these data sources, there is a lack of a methodology on dis-
covering new data sources. In order to fill this gap, we have
created an open source linked data crawling and monitoring
tool named SpEC v1.0∗∗. With the help of this tool, we have
crawled the Web via search engines in order to discover new
data sources.

The related work about linked data and crawling is
presented in Sect. 2. Our method of discovering unknown
SPARQL endpoints is presented in Sect. 3 and our SPARQL
Endpoints Discovery (SpEnD) system workflow we devel-
oped is described in Sect. 4, together with the SpEC soft-
ware. Then, SpEnD metadata collection is comparatively
analyzed with the other metadata collections in Sect. 5. Fi-
nally, Sect. 6 concludes the paper and indicates future work.

2. Related Work

Related work spans into two categories: (1) linked data
and (2) Web crawling, linked data source crawling and
metacrawling. In the former, the current status of linked
data studies are explained. In the latter, classical crawling
methods, linked data crawling and metacrawling methods
are described, in relation to the Semantic Web.

∗∗https://github.com/semihyumusak/SpEnD/releases/tag/v1.0

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

YUMUSAK et al.: SPEND: LINKED DATA SPARQL ENDPOINTS DISCOVERY USING SEARCH ENGINES
759

2.1 Linked Data

Linked data is a term for expressing structured Semantic
Web data, which is data on the Web that is linked to each
other using URIs and RDF. Bizer et al. [5] explain linked
data as a way to interconnect data sources on the Web, so
that this data becomes machine-readable, semantically an-
notated and linked to other data sources. The basic stan-
dard for linked data publishing [6] recommends that data is
named or identified using URIs, just like other Web content,
and linked to each other using the RDF model. Linked data
sources are either published as RDF documents or SPARQL
endpoints on the Web [5]. If a linked data source is pub-
lished on the Web by following the linked data publish-
ing principles†, it is called “Linked Open Data” (LOD).
A LOD source is qualified to be included in the “Link-
ing Open Data Project” (LOD Cloud) as long as it meets
certain criteria††. In the LOD Cloud, all data sources are
classified and defined by meta descriptions. In order to
provide these meta descriptions, VoID vocabulary is com-
monly used [7]. VoID vocabulary recommends specific
terms and patterns to describe linked data sources. For
instance, a SPARQL endpoint URL of a dataset can be
expressed by the void:sparqlEndpoint property in the
VoID vocabulary. Moreover, statistical data about datasets
can be expressed by using VoID properties such as the
number of triples (void:triples), the number of entities
(void:entities), the number of classes (void:classes),
and the number of properties (void:properties). In this
paper, we use these statistics to examine and compare the
linked data sources we collected in SpEnD.

2.2 Semantic Web Crawling and Metacrawling

With the announcement of the Semantic Web [8] in 2001,
the scope for Web crawlers had changed. In the Seman-
tic Web domain, classical Web crawling and indexing tech-
niques for HTML documents are incapable of collecting
knowledge-enhanced (meta) data. Thus, in order to cre-
ate proper crawling and indexing methodologies for se-
mantically annotated data, new retrieval techniques have
been proposed. BioCrawler [9] was created as an intelli-
gent crawler for evaluating semantic contents of Web pages
using the BioTope framework [10] as its engine. Multi-
Crawler [11] was developed as a pipelined crawler and in-
dexer for collecting semi-structured data from the classi-
cal Web and the Semantic Web. OntoCrawler [12] used
ontology-based website modeling for crawling and classi-
fying classical Web documents.

However, linked data source crawling also fell short of
retrieving adequate data in a limited time and resource [13].
Thus, more powerful Web crawlers are needed, which have
the capacity of continuously crawling a large portion of

†http://www.w3.org/DesignIssues/LinkedData.html
††http://lod-cloud.net

the visible Web. A way to achieve this without investing
huge amounts in computing infrastructures, is by harness-
ing the operation of classical existing search engines. This
approach could constitute an effective way to extend clas-
sical crawling methods by including search engines in the
crawling stage [14], creating a metacrawling scenario.

The term metacrawling on the classical Web is usually
discussed under the term “meta search engine” [15]–[17].
Retrieving and combining results from search engines in
the classical Web domain is not something new, and meta
search engines include SavvySearch [18], Helios [19], and
WebCrawler. However, on the Semantic Web domain, meta
search is not currently employed on any of the existing se-
mantic search engines [20]–[24].

3. Methodology

The following subsections describe the methodology fol-
lowed in this paper to develop SPARQL Endpoints Discov-
ery (SpEnD), a novel metacrawling method for discovering
and monitoring linked data sources on the Web, based on
the following two steps:

1. Discovery of SPARQL Endpoints.
2. Meta analysis of linked data sources discovered.

3.1 Discovery of SPARQL Endpoints

SPARQL endpoint discovery is a step by step approach
to crawl public search engines based on different search
queries. In the crawling stage, a unified novel metacrawling
methodology (applicable to any search engine) was applied
on major search engines. By using this methodology, the
limitations of the search API interfaces provided by existing
search engines can be overcome. Moreover, a new search
engine can be included in the system by simply inserting its
XML record in a configuration file we have designed for this
purpose. A sample record of this configuration file is listed
in Fig. 1. Its XML schema is designed to specify the com-
mon features and parameters to crawl any search engine.

Some search engines have further limitations to restrict
access for common Web crawlers such as Crawler4J††† and

Fig. 1 Search engine XML description

†††https://code.google.com/p/crawler4j/

760
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

WebSphinx [25]. For example, Google search engine re-
turns an error response 403†††† for requests coming from
Crawler4J and WebSphinx. Frequent requests from crawlers
and unknown browsers are blocked by Google. However,
if the search request is made by simulating a Web browser
(e.g. Google Chrome, Mozilla, Internet Explorer) using the
HtmlUnit††††† browser library, all search engines return re-
liable end-user results. Hence, we developed a metacrawler
called SpEnD to crawl search engine results for specific
search queries. In SpEnD, search engine browser objects
are initialized by using the XML parameters, then a crawl-
ing thread is created for each search engine.

Figure 1 shows a sample XML record created for the
Yahoo search engine, which has a query box named ‘p’, sub-
mit button named ‘search-submit’, and next button named
‘Next’ for paging through results.

3.1.1 Creating Search Keywords for Metacrawling

In order to identify metacrawling keywords that can be
used to find SPARQL endpoints, we collected a set of
SPARQL endpoints’ HTML page sources (enspoints listed
in Datahub.io website) and analyzed them to find their com-
mon patterns. For this purpose, we created a words list for
each document by excluding the English stop words. Then,
a simple term endpoint frequency (f) was calculated for
each word included in SPARQL endpoint web pages. Based
on the calculated f scores, the extracted words were sorted
in descending order which gives us a list of most commonly
used words at the top of the list. The f scoring function is
described as follows:

f (t) = nt/N

where
nt: number of documents where the term exists
N: total number of documents
t: a word or a phrase

In addition to single words, we also calculated fre-
quency scores for key phrases mentioned in specific HTML
tags in the same HTML source documents. These HTML
tags are: label, a, span, title, meta, h1, h2,

h3, li, dt, p, option . We finally combined these re-
sults and gathered a list of metacrawling search keywords
and specific search directives. This step requires some trials
and tests by combining different words and phrases together
in a single search.

3.1.2 Metacrawling Linked Data Endpoints

In this step, URLs listed in search engine result pages are
extracted by parsing the HTML source code. These URLs
are then filtered by using Web data extraction methods such
as pre-defined regular expressions and filtering criteria [26].

††††http://www.w3.org/Protocols/HTTP/HTRESP.html
†††††http://htmlunit.sourceforge.net/

Algorithm 3.1: MetaSearch(EngineList[],QueryList[])

EngineList[] : S et o f search engines
QueryList[] : S et o f keyword queries
comment: Performs a meta-search for the queries

for each S earchEngine ∈ EngineList[]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p← GetXMLParams(S earchEngine)
for each query ∈ QueryList[]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

currentPage← GetFirstPage(p, query, S earchEngine)
while currentPageIsNotEmpty
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

URLList ← ExtractURLsFromHT ML(currentPage)
URLList.removeURLsWithIrrelevantFileTypes()
URLList.removeURLsWithExcludedKeywords()
URLList.save()
currentPage← GetNextPage(currentPage)

Fig. 2 Basic SPARQL query example

In Algorithm 3.1, the metacrawling, extraction, and filter-
ing processes are defined. In this algorithm, a meta-search
task is performed for each search keyword at every search
engine. At the beginning, the search engine parameters are
initialized for the search engine object. Afterwards, a search
task is performed for each search keyword. The algorithm
visits all search result pages listed under the search task until
the end. Through this metacrawling process, all URLs hid-
den under the HTML source code are extracted, irrelevant
file types (e.g. pdf, gif, jpeg) and the excluded keywords are
filtered out.

3.1.3 URL Analysis

After the metacrawling step, every URL is checked for va-
lidity. This is a two-step process. First, the URL is checked
if it is tested and listed in Datahub repository. If the URL
is listed in Datahub repository as a SPARQL endpoint, the
URL is then automatically marked as a valid SPARQL end-
point. If it is not listed in Datahub, then it is tested for va-
lidity by sending the following simple and generic SPARQL
query to the URL endpoint; if the URL returns some results
to this query, then the URL is marked as a valid endpoint.

3.1.4 Domain Learning

Even though the method in Algorithm 3.1 is capable of lo-
cating linked data-related websites, the SPARQL endpoint
pages may not show up in the search result pages with the
common keywords like “sparql endpoint”. In order to make
a more complete search, we have created another step. After
the preliminary search trials by using search query texts cre-
ated for metacrawling (as explained above), a simple learn-
ing algorithm makes one more sophisticated search by using
the previous results. The PLD (Pay Level Domain) names
are extracted from previous URLs and then a new search
query is created by using the “site” keyword (e.g. “sparql
site:domain.com”). With this search extension, a more ef-

YUMUSAK et al.: SPEND: LINKED DATA SPARQL ENDPOINTS DISCOVERY USING SEARCH ENGINES
761

fective search is performed at each domain by specifying a
search query for each domain separately.

3.2 Meta Analysis of Linked Data Sources Discovered

In order to create the meta analysis for a linked data source,
the VoID† vocabulary includes a set of properties to define a
linked data source in terms of statistics, numbers, names and
descriptions. As a background for this vocabulary, the VoID
vocabulary implementation project offers several SPARQL
queries to collect statistical information about an existing
data source.

By sending these queries to the SPARQL endpoints, the
total number of the properties are collected. The results for
these queries include information about the size and range
of the linked data sources listed in that repository. As the
final SPARQL endpoint URL collection refinement, these
statistical results are used to filter out the same URLs from
the SpEnD URL collection, i.e. endpoint URL’s having the
same number of triples and entities are considered the same
linked data source duplicated and one of them is removed
from the list.

4. Implementation

The SpEnD project contains a metacrawler and a linked data
resource repository. The system’s architecture is visualized
in Fig. 3. The SpEnD system has three major steps: (a)
metacrawling, (b) URL analyzer, and (c) domain learner.
Metacrawling Linked Data Endpoints step (Sect. 3.1.2) uti-
lizes HtmlUnit††, which is a Web browser emulator for
traversing over Bing, Yahoo, Google, and Yandex search
engines. In order to analyze the URLs retrieved at the pre-
vious step, Jena Framework††† is used in the URL Analyzer
step (Sect. 3.1.3), by sending SPARQL queries to candidate
endpoints. All URLs found in crawling are then processed
in the Domain Learner step (Sect. 3.1.4), by using Google
Guava libraries†††† for domain name analysis. All these

Fig. 3 SpEnD system diagram

†http://www.w3.org/TR/void/
††http://htmlunit.sourceforge.net/
†††https://jena.apache.org/
††††https://github.com/google/guava

three steps are discussed in detail below. SpEnD is built
as a multi-threaded Java application. Above explained steps
of the linked data discovery process are implemented as 3
parallel threads: (a) crawler, (b) endpoint extractor, and (c)
statistical analyzer. In Fig. 4, the information flow between
these threads is described as an activity diagram. A main
thread is controlling user interactions and worker threads.

Worker threads are described as follows.

• Crawler: Performs search engine metacrawling jobs
and feeds the endpoints extractor threads with the
newly found links.

• Endpoint Extractor: Analyzes the candidate links gen-
erated by the crawler threads by sending SPARQL
queries to every link.

• Statistical Analyzer: Analyzes the SPARQL endpoints
by using statistical SPARQL queries listed in VoID de-
scriptions. The queries are sent periodically as long as
the thread runs.

Inside SpEnD, we have developed the “SPARQL Endpoint
Crawler” (SpEC), in order to metacrawl search engines, ana-
lyze resulting URLs, and perform statistical analysis on the
SPARQL endpoints discovered. Figure 5 shows the main

Fig. 4 Threads activity diagram

Fig. 5 Crawler management screen

762
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

screen of the SpEnD desktop application. The screen has
two tabs, (a) Crawler, and (b) Projects. In the Crawler sec-
tion, multi-threaded search engine crawling is performed by
using the search queries entered by the user. In the Projects
section, the statistical analysis on the discovered SPARQL
endpoints is performed. This software is designed to run
continuously, enabling an on-going crawling and analysis
of all SPARQL endpoints. Currently, the results are updated
daily, on the contrary by using classical Web crawling tech-
niques it would take weeks or months, unless vast invest-
ments on computing infrastructure were made.

5. Evaluation

We have evaluated SpEnD by running it on four major
search engines, namely Google, Yahoo, Bing, and Yan-
dex. The linked data sources discovered are analyzed in
terms of search engine results in Sect. 5.1. We then com-
pare our results with another popular linked data metadata
repository Datahub.io (Datahub) in terms of endpoint counts
and availability in Sect. 5.2, service features in Sect. 5.3, in-
teroperability features in Sect. 5.4, performance features in
Sect. 5.5. Finally, the contents and vocabularies of endpoints
are evaluated in Sect. 5.6.

5.1 Search Engine Results

Search engines were experimented by using 29 preliminary
search queries in the first stage defined in Sect. 3.1.2. Af-
terwards, for the domain learning step defined in Sect. 3.1.4,
totally 3341 domain specific search queries were sent. From
the collection of these query results, a total of 295K URLs
have been extracted. Out of these 295K URLs, 1,037 of
them were marked as SPARQL endpoints based on the
method described in Sect. 3.1.3. After the discovery pro-
cess, these endpoints are analyzed based on their availability
and meta information.

Out of these 1,037 endpoints, 211 of them are not avail-
able (not accessible but listed in the search engine results),
so they are eliminated. The remaining 826 endpoints are
then checked for duplications, whether the same dataset is
listed more than once at different URL endpoints. To this
end, the contents of the datasets are checked by evaluating
their VoID statistics, that is the number of triples, entities,
classes, and so on. If two endpoints return the same VoID
statistics, they are considered the same dataset but some-
how listed in seperate endpoints. And then, we eliminate all
duplicate datasets from the collection. With this evaluation
we eliminated a further 168 endpoints from the remaining
datasets and ended up with only 658 unique dataset end-
points. Table 1 shows the search phrases we used that return
the most results. For example, keywords “sparl query” re-
turn 207 unique SPARQL endpoints. We also utilize search
directives such as “allinurl” for searching keywords in the
URL of sites, or “allintitle” for searching in the title of sites.
The rest of the 3370 search phrases and the results are avail-

Table 1 Top 5 search phrases and the number of endpoints returned

Search Text # of Endpoints
sparql query 207
“sparql endpoint” 179
inurl:sparql 150
allintitle: sparql query 144
allinurl: sparql data 105

Table 2 The number of unique endpoints for each search engine (Exclu-
sive ones are found in that specific engine only)

Google Bing Yahoo Yandex Unique
Total

Exclusive 219 10 30 125
Total 454 168 223 358 658

Fig. 6 Search engine SPARQL endpoint discovery results and overlaps

able in the project Web site†. Table 2 shows the number of
SPARQL endpoint links discovered by each search engine,
which is also illustrated graphically in Fig. 6. Exclusive end-
point counts line in Table 2 shows the number of endpoints
found only in each specific search engine. For example,
219 unique endpoints have been found only in Google. Fig-
ure 6 shows the overlaps of the results in detail for the four
search engines. 107 endpoints have been found by all four
search engines. The results also show that Google returns
a significantly higher number of SPARQL endpoints (454
endpoints) than any other search engine. Although Google
dominates the result set, the other search engines also con-
tribute to enlarging the final SPARQL endpoint collection.
Hence, we propose for such initiatives not to rely only on
Google.

5.2 Datahub vs SpEnD in SPARQL Endpoint Counts and
Availability

Here we compare the results of SpEnD with the popular and
widely used Datahub repository results. The SPARQL end-
points listed in Datahub are collected by using the CKAN
API provided by the website. Those endpoint records are
compared both on their URLs and the corresponding PLDs.
Finally, a status monitoring was applied in June 2016 and
September 2016.

Table 3 compares the results retrieved from Datahub
and those discovered by SpEnD. We also checked their
availability, i.e. if the endpoint is responding or not. In order
to make this availability check, we performed a one month

†http://wis.etu.edu.tr/spend/

YUMUSAK et al.: SPEND: LINKED DATA SPARQL ENDPOINTS DISCOVERY USING SEARCH ENGINES
763

Table 3 Comparison of SPARQL endpoints discovered

High Avail. Low Avail. Total
(>90%) (<90%) Offline Online

Datahub 210 63 254 273
SpEnD 537 121 211 658

Fig. 7 Endpoint availabilities between June 2016–September 2016

Fig. 8 Intersection set of (a) linked data SPARQL endpoint URLs, (b)
active linked data SPARQL set domains (PLD)

status monitoring task by sending simple SPARQL queries
to every endpoint regularly (scheduled to send a query ev-
ery 10 minutes). In this table, the endpoints responding to
more than 90% of the requests are counted as high available
and less are counted as low available. Besides, the endpoints
that did not respond to any of the queries are listed as offline.
From June 2016 to September 2016, we performed multi-
ple status monitoring tasks to record the average availability
percentages of the endpoints. The availability percentages
of these endpoints are illustrated in Fig. 7. Although, the
overall percentages of highly available endpoints are higher
in SpEnD dataset than Datahub dataset, there are several
endpoints going offline temporarily or permanently. Fig-
ure 8-a visualizes the number of exclusive and common end-
points found by SpEnD and Datahub along with their on-
line/offline status.

SpEnD dominates the results with 437 exclusive end-
points. There are some SPARQL endpoints not discovered
by SpEnD. This is mainly due to the current unavailability
of many of the endpoints in Datahub (obsolete records).

The green shaded areas in Fig. 8-a shows the active and
available endpoint numbers only, at the time we tested the
endpoints. In this inner set, 221 out of 273 endpoints listed
in Datahub collection are found also by SpEnD (80.9% pre-
cision).

Although the number of online URLs shown in Fig. 8-
a is mostly dominated by SpEnD data collection (437),
some of these URLs are not domain-significant, meaning
there are several SPARQL endpoints under the same domain
names. Therefore, we also analyzed the SPARQL endpoint
URLs based on their PLDs (Pay-Level-Domains). Figure 8-
b shows the number of unique PLDs, 119 out of 130 do-
mains listed in the other collections were discovered (91.5%

Table 4 Number of PLDs and URLs

#PLD #Endpoint
Online Offline Online Offline

SpEnD 265 86 658 211
Datahub 130 126 273 254

Fig. 9 Statistical comparative analysis S:SpEnD, D:Datahub

precision). There are 11 PLDs, which are not discovered at
all. After the discovery process, the search results for these
11 PLDs are manually reviewed. It has been observed that
these PLDs are restricted for search engine crawling tasks
and are not listed in any search engine.

In Table 4, the total number of online/offline PLDs and
endpoint URLs are listed. SpEnD project has the highest
number of PLDs (265) and the highest number of endpoint
URLs (658). Although the URL lists are not examined by
any quality assessment method (yet), these are available for
further research (listed in the project website). The 437 sig-
nificant endpoint URLs and 146 significant domains discov-
ered by SpEnD project are not qualified by using the quality
measures [27]–[29]; however it is still valuable because they
are not listed and included in any other collections.

5.2.1 Comparative Statistics

In this section, the statistical queries defined by the VoID
vocabulary (explained in Sect. 2.1) were applied to each of
the endpoints listed in the Datahub and SpEnD projects. By
using these statistical features, we are able to identify the
number of triples, entities, resources, classes, predicates,
subjects, and objects used in SPARQL endpoints. In Fig. 9,
the percentages of endpoints containing similar number of
features are grouped and illustrated as a stacked column di-
agram.

According to Fig. 9, SpEnD endpoint repository con-
tains similar percentages of all statistical results compared to
Datahub repository. For every property, percentage of end-
points containing more than 100K results is more than the
Datahub repository, which means SpEnD repository con-
tains more high volume endpoints in percentage than the
Datahub in terms of triples, resources, classes, subjects, and
objects.

5.3 Service Features

In order to analyze service features of an endpoint, a simple

764
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

Table 5 Server names in HTTP get responses

Datahub SpEnD
PLD Endpoint PLD Endpoint

Apache 32 108 51 285
Virtuoso 39 71 63 119

nginx 18 16 31 58
Jetty 3 0 3 3

AllegroServe 0 0 2 2

Fig. 10 SPARQL compliance results for (a) SPARQL 1.0 (b) SPARQL
1.1

GET request is sent to all endpoints in our repository by
requesting data in RDF format. The server header of each
response is extracted.

Overall, 527 endpoints returned 200 OK response to
the lookups. The responses were classified in Table 5 in
terms of endpoint URLs and PLDs for Datahub and SpEnD.
In these results, most of the endpoints returning RDF data
use Apache, Virtuoso, and nginx servers.

5.4 Interoperability (SPARQL 1.0 and 1.1 Support)

For all endpoints listed in Datahub and SpEnD, a list of test
SPARQL queries for testing SPARQL 1.0†, and SPARQL
1.1†† were sent to every SPARQL endpoint. The test queries
were the same as the ones used in [30]. As it is illustrated
in Fig. 10-a and Fig. 10-b, a comparison of Datahub and
SpEnD in terms of the percentage of compliant endpoints
for every single feature, is performed. Whereas SpEnD
lists two times more endpoints which supports SPARQL 1.0
standards, the percentage of endpoints listed in each reposi-
tory are similar. Overall, SPARQL 1.1 support is lower than
SPARQL 1.0 support. Based on the percentages listed in
Fig. 10-b, both repositories show similar distributions.

†http://www.w3.org/2001/sw/DataAccess/tests/r2 (l.a.: 2016-
07-10)
††https://www.w3.org/2009/sparql/docs/tests/data-sparql11/

(l.a.: 2016-07-10)

Table 6 Result-size thresholds

of Endpoints
of Results Union Datahub SpEnD

500 5 1 5
1000 11 6 7
1500 1 1 1

10000 59 32 56
20000 3 1 3
50000 8 4 8

100000 39 20 38
TOTAL: 126 65 118

Fig. 11 Comparing different limit sizes

5.5 Performance

5.5.1 Result Streaming Performance

The result size thresholds for endpoints are examined by
sending a SELECT query by limiting the result size to more
than 100.000 records. 398 of the endpoints returned non-
empty results. 199 endpoints returned more than 100.000
results, which means there is no result size threshold. 126
of the endpoints returned a “round number” as explained in
[30]. Table 6 lists the number of endpoints with result-size
thresholds comparatively by listing SpEnD, Datahub, and
combined number of endpoints. In terms of the run-times
for the endpoints returning more than the 99% of the limits
specified, the execution times are illustrated in Fig. 11. Al-
though max, min, and median execution times are the same
for both SpEnD and Datahub endpoints, the average execu-
tion time for the SpEnD endpoints are lower than Datahub
endpoints.

5.5.2 Atomic Lookup and Join Performance

In this experiment, the atomic level run times for simple ASK
queries specified in [30]. The queries were prepared to re-
quest every combination of subject, predicate, and object
properties. For instance, if a subject (s) is queried, the ob-
ject and predicate conditions are written as <a> and
(which does not exist in any repository). By way of this,
an endpoint needs to trace every single triple, or go through
the relevant indexes, and this represents the maximum run
time for such queries. In order to examine the caching ef-
fect on the query results, query submissions are performed
twice for each property by labeling the first query as cold
and the second query as warm. ASK queries were sent to all

YUMUSAK et al.: SPEND: LINKED DATA SPARQL ENDPOINTS DISCOVERY USING SEARCH ENGINES
765

Fig. 12 Runtimes for ASK queries (%iles). S:SpEnD, D:Datahub

Fig. 13 Runtimes for JOIN queries (%iles). S:SpEnD, D:Datahub

endpoints listed in Datahub and SpEnD separately, and the
results are illustrated in Fig. 12. 373 endpoints from SpEnD
and 193 endpoints from Datahub are tested (all returning
false). Colored sections in each bar represent the rele-
vant percentages of endpoints returning results within the
given time period (sec). We can say that around 60% of end-
points return response under 1 second for almost all queries,
and the maximum response time is 16 seconds. Similar to
the ASK queries explained before, the join performances are
tested by sending join queries for subject-subject, subject-
object, and object-object joins as specified in [30]. The re-
sults are illustrated for Datahub and SpEnD in Fig. 13. 40%
to 50% of endpoints return response under 1 second for join
queries. There is no significant difference between datasets
in SpEnD and Datahub. so- and ss- type of join queries run
in shorter times than oo- queries. Apparently some datasets
are not indexed for the object side of triples efficiently.

5.6 Evaluation of SPARQL Endpoints

In this section, we present two types experimental analy-
sis to understand the content of the endpoints. First, a cat-
egorical analysis of the current endpoints is presented in
Sect. 5.6.1. Then a domain specific vocabulary analysis is

Fig. 14 Number of endpoints per category discovered by SpEnD

performed on the IoT use-case in Sect. 5.6.2.

5.6.1 Content Evaluation

LOD Cloud Diagram† presents the current state of the
Linked Open Data sources. In the diagram, all datasets
are colored into 8 different categories, which are manu-
ally tagged by publishers in Datahub. We have compared
the endpoints found in SpEnD against these tagged LOD
datasets.

There are 196 datasets in LOD Cloud with a valid
SPARQL endpoint, out of which 51 of them were offline
when we checked. We have discovered all but only 5
of them in SpEnD. Figure 14 presents the distribution of
endpoint categories for the endpoints found in SpEnD and
LOD. The results illustrated in Fig. 14 shows that whereas
the number of linked datasets categorized as Social Web is
more than 50% for the LOD Cloud, only a few of them
are served through SPARQL endpoints. On the contrary,
the endpoints categorized as Publications are mostly served
through SPARQL endpoints.

5.6.2 Vocabulary Evaluation

Semantic web vocabularies or ontologies are “used to clas-
sify the terms that can be used in a particular application,
characterize possible relationships, and define possible con-
straints on using those terms”†† [31]. There are some com-
monly used and domain specific vocabularies in the linked
data world such as Dublin Core, FOAF, SKOS, etc. Usage
of these vocabularies in a dataset indicates there is data in
those domains.

One of the emerging application domains where big
data is created is Internet of Things (IoT) and there are al-
ready many commonly used vocabularies for the IoT do-
main. Some of these vocabularies are examined in [32]. We
have extracted 37 IoT-related vocabularies from this work
and checked their existence and therefore usage in the linked

†LOD Cloud, http://linkeddatacatalog.dws.informatik.
uni-mannheim.de/state/
††Vocabularies, http://www.w3.org/standards/semanticweb/

ontology

766
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

Table 7 Number of ontologies identified in the IoT domain

Ontology Union SpEnD Datahub
SSN 7 7 3
DUL 4 4 1

SmartBuilding 2 2 1
Km4City 2 2 1

DogOnt 2 2 1
OpenIoT 1 1 1
Fiemser 1 1 1
Fanfpai 1 1 1

Saref 1 1 0
Total 21 21 10

Fig. 15 Number of SSN properties available in SpEnD and Datahub

datasets found in SpEnD and Datahub. We have found that 9
of the vocabularies are used and the number of linked dataset
using them are listed in Table 7. We have found that there
are 11 more datasets than Datahub using these vocabular-
ies. SSN (Semantic Sensor Networks) ontology or vocab-
ulary is the top most used ontology in linked datasets. We
have further checked the usage of SNN ontology in datasets
by comparing the commonly used SSN properties (such as
ssn:hasvalue, etc.).

Figure 15 shows the number of SSN properties used
(number of triples) in 7 dataset endpoints. We found that
datasets discovered by SpEnD only have more usage of the
properties than Datahub. For example, important properties
like ssn:sensor, ssn:observes, ssn:producedBy are not used
in Datahub at all.

6. Conclusion and Future Work

Although linked data collections are mostly stored in cen-
tralized repositories, such as Datahub, it is clearly shown in
this paper that this approach is not effective and dynamic
enough for tracing and discovering new online SPARQL
endpoints and identifying the existing ones going offline
after sometime. Thus, in this study, we employed a
metacrawling approach harnessing search engines, which
are continuously queried and analyzed by our SpEC engine.
Our results show that the majority of linked data SPARQL
endpoints are available by Google search engine. Through
this methodology, our SPARQL endpoint collection is grow-
ing incrementally and it is available to researchers for fur-

ther analysis and research. At present, SPARQL endpoints
collection through the SpEnD project has a better cover-
age of the Linked Open Data cloud both in terms of URLs
and PLDs than any other project. The next steps in this re-
search involve a semantic analysis [33] and a semantic rank-
ing [34] of the collected SPARQL endpoints. This will help
to have a better understanding about the content in the un-
derlying linked data sources, and it will be possible to clas-
sify SPARQL endpoints according to their domain or con-
text [35], [36].

References

[1] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revis-
ited,” IEEE Intelligent Systems, vol.21, no.3, pp.96–101, 2006.

[2] I. Ermilov, J. Lehmann, M. Martin, and S. Auer, “LODStats: The
Data Web Census Dataset,” The Semantic Web – ISWC 2016,
vol.9982, pp.38–46, Springer International Publishing, Cham, 2016.

[3] P. Vandenbussche, C. Aranda, A. Hogan, and J. Umbrich, “Monitor-
ing the Status of SPARQL Endpoints,” International Semantic Web
Conference (Posters & Demos), pp.3–6, 2013.

[4] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S.
Decker, “An empirical survey of Linked Data conformance,” Web
Semantics: Science, Services and Agents on the World Wide Web,
vol.14, pp.14–44, July 2012.

[5] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so
far,” International Journal on Semantic Web and Information Sys-
tems, vol.5, no.3, pp.1–22, 2009.

[6] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J.
Hollenbach, A. Lerer, and D. Sheets, “Tabulator: Exploring and An-
alyzing linked data on the Semantic Web,” Proc. 3rd International
Semantic Web User Interaction Workshop, 2006.

[7] K. Alexander and M. Hausenblas, “Describing linked datasets-on
the design and usage of void, the’vocabulary of interlinked datasets,”
Linked Data on the Web Workshop (LDOW 09), in conjunction with
18th International World Wide Web Conference (WWW 09), 2009.

[8] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol.284, no.5, pp.34–43, May 2001.

[9] A. Batzios, C. Dimou, A.L. Symeonidis, and P.A. Mitkas,
“BioCrawler: An intelligent crawler for the semantic web,” Expert
Systems with Applications, vol.35, no.1-2, pp.524–530, 2008.

[10] A.L. Symeonidis, E. Valtos, S. Seroglou, and P.A. Mitkas, “Biotope:
An Integrated Framework for Simulating Distributed Multiagent
Computational Systems,” IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, vol.35, no.3,
pp.420–432, 2005.

[11] A. Harth, A. Hogan, Y. Ding, F. Scharffe, and M. Hepp, “Author-
Rank: Ranking Improvement for the Web,” Int. Conf. Semantic Web
and Web Services, pp.1–12, 2006.

[12] S.-Y. Yang, “OntoCrawler: A focused crawler with ontology-
supported website models for information agents,” Expert Systems
with Applications, vol.37, no.7, pp.5381–5389, jul 2010.

[13] R. Isele, C. Bizer, and A. Harth, “LDSpider An open-source crawl-
ing framework for the Web of Linked Data,” International Semantic
Web Conference, pp.6–9, 2010.

[14] M. Kumar and R. Vig, “Learnable Focused Meta Crawling Through
Web,” Procedia Technology, vol.6, no.1994, pp.606–611, 2012.

[15] S. Lawrence and C. Giles, “United States Patent US6999959 B1-
Meta search engine,” 2006.

[16] A. Kenneth, J. Mcmahon, and C.A. Us, “United States Patent
US7805432 B2 Meta Search Engine,” 2012.

[17] D. Berton, B. Klock, E. Glover, and S. Kordik, “United States Patent
US20040143644 A1-Meta-search engine architecture,” 2004.

[18] A.E. Howe and D. Dreilinger, “SavvySearch: A Meta-Search En-
gine that Learns which Search Engines to Query,” AI Magazine,

http://dx.doi.org/10.1109/mis.2006.62
http://dx.doi.org/10.1007/978-3-319-46547-0_5
http://dx.doi.org/10.1016/j.websem.2012.02.001
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1016/j.eswa.2007.07.054
http://dx.doi.org/10.1109/tsmca.2005.846406
http://dx.doi.org/10.1016/j.eswa.2010.01.018
http://dx.doi.org/10.1016/j.protcy.2012.10.073

YUMUSAK et al.: SPEND: LINKED DATA SPARQL ENDPOINTS DISCOVERY USING SEARCH ENGINES
767

vol.18, no.2, pp.12–25, 1997.
[19] A. Gulli and A. Signorini, “Building an open source meta-search

engine,” Special interest tracks and posters of the 14th international
conference on World Wide Web - WWW ’05, pp.1004–1005, 2005.

[20] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu, and Y.
Pan, “Semplore: A scalable IR approach to search the Web of Data,”
Web Semantics: Science, Services and Agents on the World Wide
Web, vol.7, no.3, pp.177–188, Sept. 2009.

[21] Y. Lei, V. Uren, and E. Motta, “SemSearch: A Search Engine for
the Semantic Web,” Managing Knowledge in a World of Networks,
vol.4248, pp.238–245, Springer Berlin Heidelberg, 2006.

[22] S. Campinas and D. Ceccarelli, “The Sindice-2011 dataset for
entity-oriented search in the web of data,” Proc. 1st International
Workshop on Entity-Oriented Search (EOS), pp.26–32, 2011.

[23] T. Finin, J. Mayfield, A. Joshi, R.S. Cost, and C. Fink, “In-
formation Retrieval and the Semantic Web,” Proceedings of the
38th Annual Hawaii International Conference on System Sciences,
pp.113a–113a, IEEE, 2005.

[24] A. Harth, A. Hogan, R. Delbru, S.O. Riain, and S. Decker, “SWSE:
Answers Before Links !,” Semantic Web Challenge, 2007.

[25] R.C. Miller and K. Bharat, “SPHINX: a framework for creating per-
sonal, site-specific Web crawlers,” Computer Networks and ISDN
Systems, vol.30, pp.119–130, 1998.

[26] E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner, “Web
data extraction, applications and techniques: A survey,” Knowledge-
Based Systems, vol.70, pp.301–323, 2014.

[27] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J.
Lehmann, “Crowdsourcing Linked Data Quality Assessment,” Inter-
national Semantic Web Conference, vol.8219, pp.260–276, 2013.

[28] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R.
Cornelissen, and A. Zaveri, “Test-driven evaluation of linked data
quality,” Proceedings of t23rd international conference on World
Wide Web, pp.747–758, 2014.

[29] P.N. Mendes, H. Mühleisen, and C. Bizer, “Sieve: Linked Data
Quality Assessment and Fusion,” Proceedings of the 2012 Joint
EDBT/ICDT Workshops on - EDBT-ICDT ’12, pp.116–123, 2012.

[30] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche,
“SPARQL Web-Querying Infrastructure: Ready for Action?,” The
Semantic Web-ISWC 2013, vol.8219, pp.277–293, Springer Berlin
Heidelberg, 2013.

[31] A. Gomez-Perez and O. Corcho, “Ontology languages for the se-
mantic web,” IEEE Intelligent Systems and Their Applications,
vol.17, no.1, pp.54–60, 2002.

[32] A. Gyrard, G. Atemezing, C. Bonnet, K. Boudaoud, and M. Serrano,
“Reusing and Unifying Background Knowledge for Internet of
Things with LOV4IoT,” 4th International Conference on Future In-
ternet of Things and Cloud, pp.262–269, 2016.

[33] Z. Wang, J. Li, Y. Zhao, R. Setchi, and J. Tang, “A unified approach
to matching semantic data on the web,” Knowledge-Based Systems,
vol.39, pp.173–184, 2013.

[34] J.M. Garcı́a, M. Junghans, D. Ruiz, S. Agarwal, and A. Ruiz-Cortés,
“Integrating semantic Web services ranking mechanisms using a
common preference model,” Knowledge-Based Systems, vol.49,
pp.22–36, 2013.

[35] K. Oztoprak, “Subscriber Profiling for Connection Service Providers
by Considering Individuals and Different Timeframes,” IEICE
Trans. Commun., vol.E99-B, no.6, pp.1353–1361, 2016.

[36] K. Oztoprak, “Profiling subscribers according to their internet usage
characteristics and behaviors,” Proceedings - 2015 IEEE Interna-
tional Conference on Big Data, IEEE Big Data 2015, pp.1492–1499,
2015.

Semih Yumusak received the B.S. degree in
Computer Engineering from Koc University in
2005 and MBA degree from Istanbul Bilgi Uni-
versity in 2008. He is currently a PhD student in
Computer Engineering at Selcuk University and
a visiting researcher in The Insight Centre for
Data Analytics, Galway, Ireland. His research
interests include Semantic Web, Linked Data,
Web Mining.

Erdogan Dogdu is a professor in the
Computer Engineering Department at Cankaya
University, Turkey. He received his BS de-
gree in Computer Engineering and Science from
Hacettepe University in 1987, MS and PhD de-
grees in Computer Science from Case Western
Reserve University in 1992 and 1998 respec-
tively. His recent research interests are in se-
mantic web, web computing, big data analysis,
and IoT.

Halife Kodaz graduated from Computer En-
gineering Department of Selcuk University with
B.S. degree and M.S. degrees in 1999 and 2002,
respectively. He received the Ph.D. degree in
Electrical and Electronics Department from Sel-
cuk University in 2008. He is an Associate Pro-
fessor at the Computer Engineering Department
at Selcuk University. His research interests are
artificial intelligence and machine learning.

Andreas Kamilaris received the BSc de-
gree in Computer Science from the University of
Cyprus in 2007, the MSc degree in Distributed
Systems from the ETH University of Zurich,
Switzerland in 2009 and the PhD degree from
University of Cyprus in 2013. His research
interests include Internet/Web of Things, web
computing, big data analysis and large-scale
stream processing for smart cities and smart
agriculture applications.

Pierre-Yves Vandenbussche received a
BSc in Biology, a MEngg, a MSc in Computer
science at Ecole Centrale Lille, a European MSc
in Enterprise Interoperability and a PhD in 2011
in Information Technology from Paris VI Uni-
versity. Currently leading the Knowledge Engi-
neering and Discovery research team in Fujitsu
Ireland working with the Insight Data Center at
Galway, his research interest concerns methods
to improve data representation, knowledge sys-
tems management and knowledge graph mining.

http://dx.doi.org/10.1145/1062745.1062840
http://dx.doi.org/10.1016/j.websem.2009.08.001
http://dx.doi.org/10.1007/11891451_22
http://dx.doi.org/10.1109/hicss.2005.319
http://dx.doi.org/10.1016/s0169-7552(98)00064-6
http://dx.doi.org/10.1016/j.knosys.2014.07.007
http://dx.doi.org/10.1007/978-3-642-41338-4_17
http://dx.doi.org/10.1145/2566486.2568002
http://dx.doi.org/10.1145/2320765.2320803
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1109/5254.988453
http://dx.doi.org/10.1109/ficloud.2016.45
http://dx.doi.org/10.1016/j.knosys.2012.10.015
http://dx.doi.org/10.1016/j.knosys.2013.04.007
http://dx.doi.org/10.1587/transcom.2015ebp3467
http://dx.doi.org/10.1109/bigdata.2015.7363912

