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This work presents new constraints on the existence and the binding energy of a possible !–! bound 
state, the H-dibaryon, derived from !–! femtoscopic measurements by the ALICE collaboration. The 
results are obtained from a new measurement using the femtoscopy technique in pp collisions at √s =
13 TeV and p–Pb collisions at √sNN = 5.02 TeV, combined with previously published results from pp
collisions at √s = 7 TeV. The !–! scattering parameter space, spanned by the inverse scattering length 
f −1

0 and the effective range d0, is constrained by comparing the measured !–! correlation function 
with calculations obtained within the Lednický model. The data are compatible with hypernuclei results 
and lattice computations, both predicting a shallow attractive interaction, and permit to test different 
theoretical approaches describing the !–! interaction. The region in the ( f −1

0 , d0) plane which would 
accommodate a !–! bound state is substantially restricted compared to previous studies. The binding 
energy of the possible !–! bound state is estimated within an effective-range expansion approach and 
is found to be B!! = 3.2+1.6

−2.4(stat)+1.8
−1.0(syst) MeV.

 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and physics motivation

A detailed characterization of the !–! interaction is of fun-
damental interest since it plays a decisive role in the quantitative 
understanding of the hyperon (Y) appearance in dense neutron-
rich matter, in proto-neutron and in neutron stars [1]. If hyperons 
do appear at large densities and their fraction becomes sizeable, 
the Y–Y interaction is expected to play an important role in the 
equation of state of the system [2,3]. Even if the hyperon densi-
ties in compact objects are negligible, the interplay between the 
average separations and the !–! effective range determine the 
possible onset of phenomena such as fermion superfluidity, and 
hence influence the transport properties of the system [4–6].

The characterization of the !–! interaction is still an open is-
sue in experimental nuclear physics. The Nagara event, recently 
measured with the emulsion technique [7,8], reports a clear ev-
idence for a double-! hypernucleus 6

!!He, with a small binding 
energy between the two !s of "B!! = 0.67 ± 0.17 MeV. This 
value was obtained by comparing the binding energy of the two 
!s inside the double hypernucleus (B!! = 6.91 ± 0.16 MeV) with 
the binding energy of a single ! in a single-hypernucleus, how-
ever, it might be influenced by three-body forces. Nevertheless, 
this result was used to set a lower limit for the mass of the pre-
dicted but so far not observed H-dibaryon, a possible bound state 
composed of six quarks (uuddss) [9]. Several experimental collab-
orations have been involved in the search for this state in the 
decay channels H → !pπ and H → !!, in nuclear and elemen-

tary (e−e+) collisions, but no evidence has been found [10–12], 
even though an enhanced !–! production near threshold was 
measured by E224 and E522 at KEK-PS [13,14]. Theoretical calcu-
lations performed within the chiral constituent quark model relate 
the existence of a H-dibaryon to an overbinding of the 6

!!He mea-
sured in the Nagara event [15,16].

Theoretical models constrained to the available nucleon–
nucleon and hyperon-nucleon experimental data, assuming either 
a soft [15–17] or a hard [18,19] repulsive core for the !–! inter-
action, predict different scattering lengths ( f0) and effective ranges 
(d0). Throughout this paper the standard sign convention in fem-
toscopy is used, according to which a positive f0 corresponds to 
an attractive interaction, while a negative scattering length cor-
responds either to a repulsive potential (d0 > | f0|/2) or a bound 
state (d0 < | f0|/2). It was reported that a small variation of the 
!–! repulsive core parametrization leads to inverse scattering 
lengths within −0.27 fm−1 < f −1

0 < 4 fm−1 and effective ranges 
up to 16 fm [20]. Other calculations are directly constrained to 
the Nagara event and result in rather small scattering lengths 
and moderate effective ranges, like the FG ( f −1

0 = 1.3 fm−1; d0 =
6.59 fm) [21] and the HKMYY ( f −1

0 = 1.74 fm−1; d0 = 6.45 fm)

[22] models. It is clear that more experimental data are needed to 
study the problem in a more quantitative and model-independent 
way.

An alternative method to study hypernuclei is the investigation 
of momentum correlations of !–! pairs produced in hadron–
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hadron collisions via the femtoscopy technique [23]. The STAR col-
laboration reported a !–! scattering length and effective range 
of f −1

0 = −0.91 ± 0.31+0.07
−0.56 fm−1 and d0 = 8.52 ± 2.56+2.09

−0.74 fm, 
measured in Au–Au collisions at √sNN = 200 GeV [24]. These val-
ues correspond to a repulsive interaction; however, it was shown 
that the values and the sign of the scattering parameters strongly 
depend on the treatment of feed-down contributions from weak 
decays to the measured correlation. A re-analysis of the data out-
side the STAR collaboration came to different conclusions [20] and 
resulted in a shallow attractive interaction.

In a pioneering study [25], the !–! interaction was studied 
employing the femtoscopy technique in pp collisions at 

√
s = 7

TeV. This study demonstrated that the data are consistent with ei-
ther a bound state or an attractive interaction, however, due to 
the small data sample no quantitative results were obtained. In 
this letter, these studies are extended by analyzing final-state mo-
mentum correlations in pp collisions at 

√
s = 13 TeV and p–Pb

collisions at √sNN = 5.02 TeV, recorded by ALICE during LHC Run 
2. The small system size in pp and p–Pb gives rise to pronounced 
correlations from strong final-state interactions due to the small 
relative distance at which particles are produced. Hence, the large 
data sets enable a high-precision study of the !–! strong final-
state interaction and provide new experimental constraints on the 
scattering parameters and the existence of a possible bound state.

2. Data analysis

The analysis presented in this paper is based on the data 
samples collected by ALICE [26] during the Run 2 of the LHC 
(2015–2018) in pp collisions at 

√
s =13 TeV and p–Pb collisions 

at √sNN = 5.02 TeV, combined with the previously analyzed Run 1 
data from pp collisions at 

√
s =7 TeV [25]. The event and particle 

candidate selection criteria follow closely the procedure applied in 
the Run 1 analysis [25].

The events are triggered using two V0 detectors, which are 
small-angle plastic scintillator arrays placed on either side of the 
collision vertex at pseudorapidities 2.8 < η < 5.1 and −3.7 < η <

−1.7 [27]. Minimum bias pp and p–Pb events are triggered by 
the requirement of coincident signals in both V0 detectors, syn-
chronous with the beam crossing time defined by the LHC clock. 
The V0 detector is also used to reject background events stem-
ming from the interaction of beam particles with the beam pipe 
materials or beam-gas interactions. Pile-up events with more than 
one collision per bunch crossing are rejected by evaluating the 
presence of secondary event vertices [27]. Charged particles are re-
constructed by the Inner Tracking System (ITS) [26] and the Time 
Projection Chamber (TPC) [28], both immersed in a 0.5 T solenoidal 
magnetic field directed along the beam axis. A uniform detector 
coverage is assured by requiring the maximal deviation between 
the reconstructed primary vertex (PV) and the nominal interaction 
point to be smaller than 10 cm. The PV can be reconstructed with 
the combined information of the ITS and TPC, and independently 
with the Silicon Pixel Detector (SPD - one of the three subdetec-
tors of the ITS). If both methods are available, the difference of the 
z-coordinate between both vertices is required to be smaller than 
5 mm. After applying these selection criteria the remaining num-
ber of events is 1.0 × 109 for the pp at 

√
s =13 TeV sample and 

6.1 × 108 for p–Pb at √sNN = 5.02 TeV. This corresponds to about 
90% and 84% of all processed events in pp and p–Pb.

The !–! interaction is the main focus of the present study. As 
will be explained in the next section, the p–p correlation function 
is an essential input for the femtoscopic analysis of !–!. There-
fore, the reconstruction of both protons and ! particles will be 
described in the following paragraphs. To increase the statistical 

significance of the result, the anti-particle pairs are measured as 
well.

The selection of the proton candidates follows the analysis 
strategy used for the pp collisions at 

√
s =7 TeV [25]. The parti-

cle identification (PID) is determined by the number of standard 
deviations nσ between the hypothesis for a proton and the exper-
imental measurement of the specific energy loss dE/dx in the TPC 
or the timing information from the Time-Of-Flight (TOF) detector 
[29]. The analyzed tracks are selected within the kinematic range 
0.5 < pT < 4.05 GeV/c and |η| < 0.8. The PID is performed only 
with the TPC for tracks with p < 0.75 GeV/c, by requiring |nσ | < 3. 
To maintain the purity of tracks with p > 0.75 GeV/c, the |nσ | is 
calculated from combining the TPC and TOF information. The con-
tribution of secondary particles, which stem from electromagnetic 
and weak decays or the detector material, are a contamination in 
the signal. The fractions of primary and secondary protons are ex-
tracted using Monte Carlo (MC) template fits to the distance of 
closest approach of the particles to the PV [30]. The MC distribu-
tions are generated using Pythia 8.2 [31] for the pp and DPMJET 
3.0.5 [32] for the p–Pb case, filtered through the ALICE detector 
and reconstruction algorithm [26]. The proton purity in pp (p–Pb) 
is found to be 99 (97)% with a primary fraction of 85 (86)%.

The ! particles are reconstructed via the decay ! → pπ− , 
which has a branching ratio of 63.9% and cτ = 7.89 cm [33]. For 
the reconstruction of the ! the charge conjugate decay is em-
ployed. The interaction rate of the LHC varied during different 
periods of the pp running. To maintain a constant purity that is 
independent of the interaction rate, in addition to the selection 
criteria used for the analysis of pp collisions at 

√
s =7 TeV [25], 

the charged decay tracks must either have a hit in one of the 
SPD or Silicon Strip Detector (SSD - ITS subdetector) layers or a 
matched TOF signal. After applying all selection criteria the final 
! and ! candidates are selected in a 4 MeV/c2 (∼ 3σ ) mass win-
dow around the nominal mass [33]. The fractions of primary and 
secondary ! particles are extracted similarly as the protons, while 
the observable for the template fits is the cosine of the opening 
angle α between the ! momentum and the vector pointing from 
the PV to the ! decay vertex. The ! purity in pp (p–Pb) is found 
to be 97 (94)% with a primary fraction of 59 (50)%. The exact com-
position of secondaries, as well as the ! to (0 ratio, is fixed in 
the MC simulations, but is model dependent. Therefore, the sys-
tematic uncertainties include a 20% variation of the ratios of these 
contributions.

3. Analysis of the correlation function

The method used to investigate the !–! interaction relies on 
particle pair correlations measured as a function of &k∗ , defined 
as the single-particle momentum in the pair rest frame [23]. The 
observable of interest C( &p1, &p2) is defined as the ratio of the prob-
ability of measuring simultaneously two particles with momenta 
&p1 and &p2, to the product of the single-particle probabilities:

C( &p1, &p2) = P ( &p1, &p2)

P ( &p1)P ( &p2)
. (1)

In the absence of correlations, the numerator factorizes and the 
correlation function becomes unity. The femtoscopy formalism [23]
relates the correlation function for a pair of particles, to their 
effective two-particle emitting source function S(r) and the two-
particle wave function )( &k∗, &r):

C(k∗) =
∫

S(r) | )( &k∗,&r) |2 d3r
k∗→∞−−−−→ 1, (2)
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Table 1
The weight parameters (Eq. (4)) λpp

i and λp–Pb
i of the individual components of the p–p, p–!, p–+− and !–! correlation functions. The sub-indexes are used to indicate 

the mother particle in case of feed-down. Only the non-flat feed-down (residual) contributions are listed individually, while all other contributions are listed as “flat residuals 
(res.)”. All misidentified (fake) pairs are assumed to be uncorrelated, thus resulting in a flat correlation signal.

p–p p–! p–+− !–!

Pair λ
pp
i

(%)
λ

p–Pb
i

(%)
Pair λ

pp
i

(%)
λ

p–Pb
i

(%)
Pair λ

pp
i

(%)
λ

p–Pb
i

(%)
Pair λ

pp
i

(%)
λ

p–Pb
i

(%)

pp 74.8 72.8 p! 50.3 41.5 p+− 55.5 50.8 !! 33.8 23.9
pp! 15.1 16.1 p!(0 16.8 13.8 p+−

+(1530)− 8.8 8.1
p!+− 8.3 12.1

flat res. 8.1 8.0 flat res. 20.4 24.9 flat res. 30.3 28.3 flat res. 59.8 64.0
fakes 2.0 3.1 fakes 4.2 7.7 fakes 5.4 12.8 fakes 6.4 12.1

where r is the relative distance between the points of emission of 
the two particles. This definition of C(k∗) assumes that the emis-
sion source is not dependent on k∗ , it is spherically symmetric 
and the emission of all particles is simultaneous. The EPOS trans-
port model [34] predicts an emission source that does not fully 
satisfy the above assumptions. However, it was verified that the 
above simplifications result in very mild deviations in the correla-
tion functions, which are negligible for the present analysis.

For a spherical symmetric potential the angular dependence of 
the wave-function is trivially integrated out. Thus the direction of 
&k∗ becomes irrelevant on the left-hand side of Eq. (2). Particles 

with large relative momenta q∗ = 2k∗ are not correlated, leading 
to C(k∗ → ∞) = 1.

The strong interaction has a typical range of a few femtome-
ters and thus a significant modification of the wave function with 
respect to its asymptotic form is expected only for r ! 2 fm. Con-
sequently, for small emission sources the correlation function will 
be particularly sensitive to the strong interaction potential. Ex-
perimentally, a small emission source can be formed in pp and 
p–Pb collisions [25,35]. In the current analysis, it is assumed that 
the emission profile is Gaussian and that the p–p and !–! sys-
tems are characterized by a common source size r0 = rp–p = r!–! , 
which is determined by fitting the p–p correlation function and 
then used for the investigation of the !–! interaction. In pp colli-
sions the effect of mini-jets is only present for baryon correlations 
between particle and anti-particle [25], hence the investigated data 
provide a clean environment to extract the femtoscopic signal.

Two different frameworks are available for the computation of 
C(k∗). The first tool used in this analysis is the “Correlation Analy-
sis Tool using the Schrödinger equation” (CATS) [35]. Here, a local 
potential V (r) is used as the input to a numerical evaluation of the 
wave function and the corresponding correlation function. CATS 
delivers an exact solution and this tool is used to model the p–p 
correlation using a Coulomb and an Argonne v18 potential [36]
for the strong interaction. The known p–p interaction allows the 
source size r0 to be extracted from the fit to the measured corre-
lation function.

The second tool is the Lednický model [37], which assumes a 
Gaussian emission source and evaluates the wave function in the 
effective-range expansion. In this approach, the interaction is pa-
rameterized in terms of the scattering length f0 and the effective 
range d0. This approach produces a very accurate approximation 
for C(k∗) in case d0 ! r0, while for smaller values of r0 the ap-
proximate solution may become unstable, in particular for negative 
values of f0 [25]. However, it is known that the Lednický model 
can be used to model the p–! correlation function even for a 
source size of r0 = 1.2 fm, with a deviation from the exact solution 
of less than 4% [35]. It is therefore expected that this model can 
successfully be used to study the !–! interaction, even in small 
collision systems. Nevertheless, the validity of the approximation 
will be further verified in the next section.

Experimentally, the correlation function is defined as

Cexp(k∗) = N
Nsame(k∗)
Nmixed(k∗)

k∗→∞−−−−→ 1, (3)

where Nsame(k∗) and Nmixed(k∗) are the same and mixed event 
distributions, while N is a normalization constant determined by 
the condition that particle pairs with large relative momenta are 
not correlated. In small collision systems Cexp(k∗) often has a long-
range tail due to momentum conservation, and a related approx-
imately linear non-femtoscopic background extending to low k∗

[25]. The latter is incorporated by including a linear term in the 
fit function.

To increase the statistical significance of Cexp(k∗) the particle-
particle (PP) and antiparticle-antiparticle (PP) correlations are 
combined using their weighted mean Cexp(k∗) = NPPCexp,PP(k∗) ⊕
NPPCexp,PP(k

∗), with the normalization performed in the range 
240 < k∗ < 340 MeV/c, which is unaffected by femtoscopic corre-
lations. It was verified that NPPCexp,PP(k∗) = NPPCexp,PP(k

∗) within 
the statistical uncertainties.

The systematic uncertainties of the experimental correlation 
function are evaluated by varying the selection criteria of the pro-
ton and ! candidates within 20%, following the procedure used 
for the analysis of the pp collisions at 

√
s =7 TeV [25]. Neverthe-

less, by performing a Barlow test [38], the systematic uncertainties 
were found to be insignificant compared to the statistical uncer-
tainties.

Momentum resolution effects modify the correlation function 
by at most 10% and are accounted for by correcting the theoretical 
correlation function [25]. The measured experimental correlation 
function contains not only the correlation signal of interest, but ad-
ditionally accumulates residual contributions from feed-down par-
ticles. These are considered in the theoretical description of the 
correlation by using the linear decomposition of the total correla-
tion function into

Ctot(k∗) =
∑

i

λi Ci(k
∗), (4)

where the sum runs over all contributions, the λ parameters are 
the weight factors for the different contributions to the total cor-
relation and i = 0 corresponds to the primary correlation. The 
λ coefficients are determined in a data-driven approach by per-
forming Monte Carlo template fits to the data, using Pythia and 
DPMJET in pp and p–Pb collisions, respectively. The values ob-
tained are summarized in Table 1. The systematic uncertainties are 
determined from the variation of the composition of secondary 
contributions, and the ! to (0 ratio. The individual contribu-
tions Ci(k∗) are modeled either using CATS or the Lednický model. 
The non-genuine (i *= 0) contributions include additional kinematic 
effects which lead to a smearing of their corresponding correla-
tion functions [39]. As the correlation strength of these residuals 
is strongly damped one can assume that Ci *=0(k∗) ≈ 1 [40]. The 
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Fig. 1. Results for the fit of the pp data at √s = 13 TeV. The p–p correlation function (left panel) is fitted with CATS (blue line) and the !–! correlation function (right 
panel) is fitted with the Lednický model (yellow line). The dashed line represents the linear baseline from Eq. (5), while the dark dashed-dotted line on top of the !–! data 
shows the expected correlation based on quantum statistics alone, in case of a strong interaction potential compatible with zero.

only significant contribution is p–!→p–p, where the p–! inter-
action is modeled using the scattering parameters from a next-to-
leading order (NLO) χEFT calculation [41] and the corresponding 
correlation function is computed using the Lednický model. The 
remaining residuals are considered flat, apart from p–+−→p–!, 
p–(0 →p–! and p–+(1530)− →p–+− , where the interaction can 
be modeled. For the p–+− interaction a recent lattice QCD poten-
tial, from the HAL QCD collaboration [42,43], is used. The p–(0 is 
modeled as in [44], while p–+(1530)− is evaluated by taking only 
the Coulomb interaction into account.

After all corrections have been applied to Ctot(k∗), the final fit 
function is obtained by multiplying it with a linear baseline (a +
bk∗) describing the normalization and non-femtoscopy background 
[25]

Cfit(k
∗) = (a + bk∗)Ctot(k∗). (5)

Fig. 1 shows an example of the p–p and !–! correlation func-
tions measured in pp collisions at 

√
s = 13 TeV, together with 

the fit functions. The p–p experimental data show a flat behav-
ior in the range 200 < k∗ < 400 MeV/c, thus by default the slope 
of the baseline is assumed to be zero (b = 0) and the corre-
lation is fitted in the range k∗ < 375 MeV/c. The resulting r0
values are 1.182 ± 0.008(stat)+0.005

−0.002(syst) fm in pp collisions at √
s = 13 TeV and 1.427 ± 0.007(stat)+0.001

−0.014(syst) fm in p–Pb colli-
sions at √sNN = 5.02 TeV. In pp collisions at 

√
s = 7 TeV the source 

size is r0 = 1.125 ± 0.018(stat)+0.058
−0.035(syst) fm [25].

The systematic uncertainties of the radius r0 are evaluated fol-
lowing the prescription established during the analysis of pp col-
lisions at 

√
s =7 TeV [25]. The upper limit of the fit range for the 

p–p pairs is varied within k∗ ∈ {350, 375, 400} MeV/c and the in-
put to the λ parameters is modified by 20%, keeping primary and 
secondary fractions constant.

Two further systematic variations are performed for the p–p 
correlation. The first concerns the possible effect of non-femto-
scopy contributions to the correlation functions, which can be 
modeled by a linear baseline (see Eq. (5)) with the inclusion of 
b as a free fit parameter. The final systematic variation is to model 
the p–! feed-down contribution by using a leading-order (LO) [41,
45] computation to model the interaction. The effect of the latter 
is negligible, as the transformation to the p–p system smears the 
differences observed in the pure p–! correlation function out.

To investigate the !–! interaction the source sizes are fixed to 
the above results and the !–! correlations from all three data 
sets are fitted simultaneously in order to extract the scattering 

parameters. The correlation functions show a slight non-flat be-
havior at large k∗ , especially for the pp collisions at 

√
s = 13 TeV 

(right panel in Fig. 1). Thus the fit is performed by allowing a non-
zero slope parameter b (see Eq. (5)). The fit range is extended to 
k∗ < 460 MeV/c in order to better constrain the linear baseline. 
Due to the small primary λ parameters (see Table 1) the !–! cor-
relation signal is quite weak and the fit shows a slight systematic 
enhancement compared to the expected Ctot(k∗) due to quantum 
statistics only, suggestive of an attractive interaction. However, the 
current statistical uncertainties do not allow the !–! scattering 
parameters to be extracted from the fit. Therefore, an alternative 
approach to study the !–! interaction will be presented in the 
next section. Systematic uncertainties related to the !–! emission 
source may arise from several different effects, which are discussed 
in the rest of this section.

Previous studies have revealed that the emission source can be 
elongated along some of the spatial directions and have a mul-
tiplicity or mT dependence [46,47]. In the present analysis it is 
assumed that the correlation function can be modeled by an ef-
fective Gaussian source. The validity of this statement is verified 
by a simple toy Monte Carlo, in which a data-driven multiplicity 
dependence is introduced into the source function and the result-
ing theoretical p–p correlation function computed with CATS. The 
deviations between this result and a correlation function obtained 
with an effective Gaussian source profile are negligible.

Possible differences in the effective emitting sources of p–p and 
!–! pairs due to the strong decays of broad resonances and mT
scaling are evaluated via simulations and estimated to have at 
most a 5% effect on the effective source size r0. This is taken into 
account by including an additional systematic uncertainty on the 
r!–! value extracted from the fit to the p–p correlation.

4. Results

In order to extract the !–! scattering parameters, the correla-
tion functions measured in pp collisions at 

√
s =7, 13 TeV as well 

as in p–Pb collisions at √sNN = 5.02 TeV are fitted simultaneously. 
The right panel in Fig. 1 shows the !–! correlation function ob-
tained in pp collisions at 

√
s = 13 TeV together with the result 

from the fit.
Since the uncertainties of the scattering parameters are large, 

different model predictions are tested on the basis of their agree-
ment with the measured correlation functions.

One option is to use a local potential and obtain C(k∗) based 
on the exact solution from CATS, with the source size fixed to the 
value obtained from the fit to the p–p correlations. Many of the 
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5.02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5.02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08 [48], HKMYY [22] and Nijmegen ND46 [18] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46 predicts a bound state, while the ESC08 and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5.02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5] fm−1 and d0 ∈ [0, 18] fm 
and refit the !–! correlation using Eq. (5) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5.02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating "χ2

i = χ2
i − χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38]. 
The predicted scattering parameters of all discussed potentials are 
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Fig. 4. The region of the 1σ confidence level from Fig. 3, displayed in the (B!!, d0) 
plane. The inner (dark) region corresponds to the statistical uncertainty of the 
method, while the outer (light) region includes the systematic variations. The red 
star corresponds to the parameters with the lowest χ2.

highlighted with different markers and the phase space region in 
which the Lednický model produces an unphysical correlation is 
specified by the black hatched area. In this region the effective 
range expansion breaks down and the Lednický equation leads to 
a negative correlation function. While the STAR result [24] is lo-
cated in this region, all theoretical models exclude the possibility 
of a repulsive !–! interaction with large effective range. More-
over a re-analysis of the STAR data [20] demonstrated that a more 
realistic treatment of the residual correlations leads to an inver-
sion of the sign of the scattering length, that corresponds to an 
attractive potential. The imposed limit on the scattering length is 
f −1
0 > 0.8 fm−1 [20]. This result can be tested within the cur-

rent work, and Fig. 3 demonstrates that the ALICE data can ex-
tend those constraints. In particular the region corresponding to a 
strongly attractive or a very weakly binding short-range interac-
tion (small | f −1

0 | and small d0) is excluded by the data, while a 
shallow attractive potential (large f −1

0 ) is in very good agreement 
with the experimental results obtained from this analysis. A !–!
bound state would correspond to negative f −1

0 and small d0 val-
ues. The present data are compatible with such a scenario, but the 
available phase space is strongly constrained. The HKMYY [22], FG 
[21] and HAL QCD [50] values are of particular interest, as the first 
two models are tuned to describe the modern hypernuclei data, 
while the latter is the latest state-of-the-art lattice computation 
from the HAL QCD collaboration. The lattice results are preliminary 
and predict the scattering parameters f −1

0 = 1.45 ± 0.25 fm−1 and 
d0 = 5.16 ± 0.82 fm [50]. All three models are compatible with the 
ALICE data, providing further support for a shallow attractive !–!
interaction potential.

A possible bound state is investigated within the effective-range 
expansion by computing the corresponding binding energy from 
the relation [51,52]

B!! = 1

m!d2
0

(
1 −

√
1 + 2d0 f −1

0

)2

. (6)

This relation is only valid for bound states, which are characterized 
by negative f −1

0 values. Further, the binding energy has to be a real 
number, thus the expression 1 + 2d0 f −1

0 has to be positive, which 
implies that at least one of the parameters f −1

0 or d0 has to be 
small in absolute value. With these restrictions Eq. (6) transforms 
the observables in the exclusion plot (Fig. 3) from ( f −1

0 , d0) to 
(B!!, d0), considering only the parameter space compatible with 
a bound state. This is done in Fig. 4, where only the 1σ confidence 
region is shown, as it corresponds to the uncertainty of B!! . The 
dark region marks the statistical uncertainty of the fit. The allowed 

binding energy, independent of d0, is B!! = 3.2+1.6
−2.4(stat) MeV, 

where the central value corresponds to the lowest χ2 and the 
uncertainties are determined based on the lowest and highest al-
lowed B!! values within the 1σ confidence region. However the 
systematic uncertainties related to the source sizes are not taken 
into account, neither any possible biases related to the fit pro-
cedure. Thus the computation of the exclusion plots (Figs. 3 and 
4) was repeated 121 times, where in each re-iteration the source 
sizes related to the data sets are varied within the associated un-
certainties, the fit ranges within k∗ ∈ {420, 460, 500} MeV/c and 
the bin widths of the experimental correlations are chosen as 
12, 16 and 20 MeV/c. The resulting fluctuations of the 1σ con-
fidence region are marked in Fig. 4 by the light region and rep-
resent the total uncertainty. Assuming the latter is the quadratic 
sum of the statistical and systematic uncertainty, the final result is 
B!! = 3.2+1.6

−2.4(stat)+1.8
−1.0(syst) MeV.

5. Summary

In this Letter, new data on p–p and !–! correlations in pp
collisions at 

√
s = 13 TeV and p–Pb collisions at √sNN = 5.02 TeV 

are presented. Together with the results from a pioneering study 
on two-baryon correlations in pp at 

√
s = 7 TeV, these data allow 

for a detailed study of the !–! interaction with unprecedented 
precision.

Each data set is analyzed separately by extracting the p–p and 
!–! correlation functions. The former are used to constrain the 
size of the source r0, which is assumed to be the same for p–p 
and !–! pairs. The !–! interaction is then investigated by test-
ing the combined compatibility of all data sets to different model 
predictions and scattering parameters. The HKMYY and FG models, 
which are tuned to hypernuclei data, and the lattice calculations 
performed by the HAL QCD collaboration predict a shallow at-
tractive interaction potential. The ALICE data manifest very good 
agreement with these predictions. Nevertheless, the data is also 
compatible with the existence of a bound state, given a binding 
energy of B!! = 3.2+1.6

−2.4(stat)+1.8
−1.0(syst) MeV. The Run 3 of the LHC 

is expected to further increase the statistical significance of the 
!–! correlation function and allow the scattering parameters to 
be constraint even more precisely in the future.
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J. Bielčík 37, J. Bielčíková 93, A. Bilandzic 117,103, G. Biro 145, R. Biswas 3, S. Biswas 3, J.T. Blair 119, D. Blau 87, 
C. Blume 69, G. Boca 139, F. Bock 94,34, A. Bogdanov 91, L. Boldizsár 145, A. Bolozdynya 91, M. Bombara 38, 
G. Bonomi 140, H. Borel 137, A. Borissov 144,91, M. Borri 128, H. Bossi 146, E. Botta 26, C. Bourjau 88, 
L. Bratrud 69, P. Braun-Munzinger 105, M. Bregant 121, T.A. Broker 69, M. Broz 37, E.J. Brucken 43, 
E. Bruna 58, G.E. Bruno 33,104, M.D. Buckland 128, D. Budnikov 107, H. Buesching 69, S. Bufalino 31, 
O. Bugnon 114, P. Buhler 113, P. Buncic 34, Z. Buthelezi 73, J.B. Butt 15, J.T. Buxton 95, D. Caffarri 89, 
A. Caliva 105, E. Calvo Villar 110, R.S. Camacho 44, P. Camerini 25, A.A. Capon 113, F. Carnesecchi 10, 
J. Castillo Castellanos 137, A.J. Castro 130, E.A.R. Casula 54, F. Catalano 31, C. Ceballos Sanchez 52, 
P. Chakraborty 48, S. Chandra 141, B. Chang 127, W. Chang 6, S. Chapeland 34, M. Chartier 128, 
S. Chattopadhyay 141, S. Chattopadhyay 108, A. Chauvin 24, C. Cheshkov 135, B. Cheynis 135, 
V. Chibante Barroso 34, D.D. Chinellato 122, S. Cho 60, P. Chochula 34, T. Chowdhury 134, P. Christakoglou 89, 
C.H. Christensen 88, P. Christiansen 80, T. Chujo 133, C. Cicalo 54, L. Cifarelli 10,27, F. Cindolo 53, 
J. Cleymans 125, F. Colamaria 52, D. Colella 52, A. Collu 79, M. Colocci 27, M. Concas 58,ii, 
G. Conesa Balbastre 78, Z. Conesa del Valle 61, G. Contin 59,128, J.G. Contreras 37, T.M. Cormier 94, 



ALICE Collaboration / Physics Letters B 797 (2019) 134822 9

Y. Corrales Morales 58,26, P. Cortese 32, M.R. Cosentino 123, F. Costa 34, S. Costanza 139, J. Crkovská 61, 
P. Crochet 134, E. Cuautle 70, L. Cunqueiro 94, D. Dabrowski 142, T. Dahms 103,117, A. Dainese 56, 
F.P.A. Damas 137,114, S. Dani 66, M.C. Danisch 102, A. Danu 68, D. Das 108, I. Das 108, S. Das 3, A. Dash 85, 
S. Dash 48, A. Dashi 103, S. De 85,49, A. De Caro 30, G. de Cataldo 52, C. de Conti 121, J. de Cuveland 39, 
A. De Falco 24, D. De Gruttola 10, N. De Marco 58, S. De Pasquale 30, R.D. De Souza 122, S. Deb 49, 
H.F. Degenhardt 121, K.R. Deja 142, A. Deloff 84, S. Delsanto 131,26, P. Dhankher 48, D. Di Bari 33, 
A. Di Mauro 34, R.A. Diaz 8, T. Dietel 125, P. Dillenseger 69, Y. Ding 6, R. Divià 34, Ø. Djuvsland 22, 
U. Dmitrieva 62, A. Dobrin 34,68, B. Dönigus 69, O. Dordic 21, A.K. Dubey 141, A. Dubla 105, S. Dudi 98, 
M. Dukhishyam 85, P. Dupieux 134, R.J. Ehlers 146, D. Elia 52, H. Engel 74, E. Epple 146, B. Erazmus 114, 
F. Erhardt 97, A. Erokhin 112, M.R. Ersdal 22, B. Espagnon 61, G. Eulisse 34, J. Eum 18, D. Evans 109, 
S. Evdokimov 90, L. Fabbietti 117,103, M. Faggin 29, J. Faivre 78, A. Fantoni 51, M. Fasel 94, P. Fecchio 31, 
L. Feldkamp 144, A. Feliciello 58, G. Feofilov 112, A. Fernández Téllez 44, A. Ferrero 137, A. Ferretti 26, 
A. Festanti 34, V.J.G. Feuillard 102, J. Figiel 118, S. Filchagin 107, D. Finogeev 62, F.M. Fionda 22, G. Fiorenza 52, 
F. Flor 126, S. Foertsch 73, P. Foka 105, S. Fokin 87, E. Fragiacomo 59, U. Frankenfeld 105, G.G. Fronze 26, 
U. Fuchs 34, C. Furget 78, A. Furs 62, M. Fusco Girard 30, J.J. Gaardhøje 88, M. Gagliardi 26, A.M. Gago 110, 
A. Gal 136, C.D. Galvan 120, P. Ganoti 83, C. Garabatos 105, E. Garcia-Solis 11, K. Garg 28, C. Gargiulo 34, 
K. Garner 144, P. Gasik 103,117, E.F. Gauger 119, M.B. Gay Ducati 71, M. Germain 114, J. Ghosh 108, 
P. Ghosh 141, S.K. Ghosh 3, P. Gianotti 51, P. Giubellino 105,58, P. Giubilato 29, P. Glässel 102, 
D.M. Goméz Coral 72, A. Gomez Ramirez 74, V. Gonzalez 105, P. González-Zamora 44, S. Gorbunov 39, 
L. Görlich 118, S. Gotovac 35, V. Grabski 72, L.K. Graczykowski 142, K.L. Graham 109, L. Greiner 79, A. Grelli 63, 
C. Grigoras 34, V. Grigoriev 91, A. Grigoryan 1, S. Grigoryan 75, O.S. Groettvik 22, J.M. Gronefeld 105, 
F. Grosa 31, J.F. Grosse-Oetringhaus 34, R. Grosso 105, R. Guernane 78, B. Guerzoni 27, M. Guittiere 114, 
K. Gulbrandsen 88, T. Gunji 132, A. Gupta 99, R. Gupta 99, I.B. Guzman 44, R. Haake 34,146, M.K. Habib 105, 
C. Hadjidakis 61, H. Hamagaki 81, G. Hamar 145, M. Hamid 6, R. Hannigan 119, M.R. Haque 63, 
A. Harlenderova 105, J.W. Harris 146, A. Harton 11, J.A. Hasenbichler 34, H. Hassan 78, D. Hatzifotiadou 10,53, 
P. Hauer 42, S. Hayashi 132, S.T. Heckel 69, E. Hellbär 69, H. Helstrup 36, A. Herghelegiu 47, 
E.G. Hernandez 44, G. Herrera Corral 9, F. Herrmann 144, K.F. Hetland 36, T.E. Hilden 43, H. Hillemanns 34, 
C. Hills 128, B. Hippolyte 136, B. Hohlweger 103, D. Horak 37, S. Hornung 105, R. Hosokawa 133, P. Hristov 34, 
C. Huang 61, C. Hughes 130, P. Huhn 69, T.J. Humanic 95, H. Hushnud 108, L.A. Husova 144, N. Hussain 41, 
S.A. Hussain 15, T. Hussain 17, D. Hutter 39, D.S. Hwang 19, J.P. Iddon 128,34, R. Ilkaev 107, M. Inaba 133, 
M. Ippolitov 87, M.S. Islam 108, M. Ivanov 105, V. Ivanov 96, V. Izucheev 90, B. Jacak 79, N. Jacazio 27, 
P.M. Jacobs 79, M.B. Jadhav 48, S. Jadlovska 116, J. Jadlovsky 116, S. Jaelani 63, C. Jahnke 121, 
M.J. Jakubowska 142, M.A. Janik 142, M. Jercic 97, O. Jevons 109, R.T. Jimenez Bustamante 105, M. Jin 126, 
F. Jonas 144,94, P.G. Jones 109, A. Jusko 109, P. Kalinak 65, A. Kalweit 34, J.H. Kang 147, V. Kaplin 91, S. Kar 6, 
A. Karasu Uysal 77, O. Karavichev 62, T. Karavicheva 62, P. Karczmarczyk 34, E. Karpechev 62, 
U. Kebschull 74, R. Keidel 46, M. Keil 34, B. Ketzer 42, Z. Khabanova 89, A.M. Khan 6, S. Khan 17, 
S.A. Khan 141, A. Khanzadeev 96, Y. Kharlov 90, A. Khatun 17, A. Khuntia 118,49, B. Kileng 36, B. Kim 60, 
B. Kim 133, D. Kim 147, D.J. Kim 127, E.J. Kim 13, H. Kim 147, J. Kim 147, J.S. Kim 40, J. Kim 102, J. Kim 147, 
J. Kim 13, M. Kim 102, S. Kim 19, T. Kim 147, T. Kim 147, S. Kirsch 39, I. Kisel 39, S. Kiselev 64, A. Kisiel 142, 
J.L. Klay 5, C. Klein 69, J. Klein 58, S. Klein 79, C. Klein-Bösing 144, S. Klewin 102, A. Kluge 34, M.L. Knichel 34, 
A.G. Knospe 126, C. Kobdaj 115, M.K. Köhler 102, T. Kollegger 105, A. Kondratyev 75, N. Kondratyeva 91, 
E. Kondratyuk 90, P.J. Konopka 34, L. Koska 116, O. Kovalenko 84, V. Kovalenko 112, M. Kowalski 118, 
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