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Abstract Intelligent robotic welding involves replicating the
role of a manual professional welder to adaptively control the
welding process. This is necessary to achieve accurate, fast
and high-quality welding process in addition to the challeng-
ing factors for humans to operate in the welding environment.
Therefore, robotic welding exists since the early days of ro-
botics and it is still an active research area. This is why there
have been numerous researches in this area for a very long
time. Among various techniques proposed by researchers for
the adaptive control of the robotic welding process, vision-
based control is the most popular due to its non-invasiveness.
Therefore, in this paper, we review, analyse and categorise the
proposed vision-based techniques with the aim of covering the
different image processing and feature extraction aspect of the
techniques. The focus is mainly on the active vision system
where various image processing techniques have been utilised
in extracting the welding seam features. The challenges and
difficulties to extract seam features in active vision system
have been highlighted. The trends and new approaches have
been indicated in order to provide a comprehensive source for
researchers who are planning to carry out research related to
the intelligent robot vision techniques for welding automation.
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1 Introduction

Robotic welding is one of the oldest and most rapidly growing
areas for robotics applications. However, fully automated ro-
botic welding system is yet to be effectively achieved. This is
due to the harsh environmental conditions created by the
welding process and various factors such as welding spatter
and arc lights disturbance, vigorous welding structure types,
distortions due to welding heat generation and varying struc-
ture of the welding seams [1]. These factors collectively affect
the realisation of a fully automated robotic welding system.
Intelligent robotic welding system comprises three basic com-
ponents as shown in Fig. 1: (1) tracking and profiling of
welding seam and pool, (2) robot trajectory planning and con-
trol [2–8] and (3) welding process parameter control [9–12].
Tracking and profiling of welding seam provide information
for robot trajectory planning and control. It is also a crucial
step in controlling welding parameters to match the require-
ments set for achieving high-quality welding. As there are
plenty of different research directions on the tracking and pro-
filing of welding seam and pool, in this review, we will focus
on describing and categorizing the proposed approaches in
this field. The aim is to give a comprehensive insight by ex-
ploring the available techniques proposed in the literature and
by indicating the cons and pros of the techniques. The review
will only be limited to the first component of welding system
(tracking and profiling of welding seam); the second and third
components will not be covered in this review.

Methods in tracking and profiling welding pool and seam
can be categorised into (i) vision-based sensing and (ii) non-
vision-based sensing methods. The most common non-vision-
based sensing method is the through-arc sensingmethod. The
method uses the electrical parameters from the welding arc
and the knowledge about the motion of the weld torch which
is controlled by the welding robot [1, 9, 13]. The through-arc
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sensing method involves the use of the change in the current
when the distance between the contact tube and the workpiece
varies [1]. This is considered one of the oldest methods for
seam tracking and profiling. Although it is relatively easy and
cost-effective to use, it is generally considered as less accurate
than the optical sensing methods and cannot be used to profile
a complex seams andmolten welding pool duringwelding [1].
Research on finding geometrical properties of both seam and
pool using optical sensing method can be further categorised
based on either passive vision or active vision methods. The
distinction between these two methods relies on the use of the
optional light source. In the active vision, a camera device and
a light source are used while in the passive vision, two camera
devices are used without a light source. The image processing
algorithms used in either of these methods significantly differ
as the active vision system becomes much easier than the
former due to the simplicity of using an external light source
to mark and profile the welding workpiece.

Using the passive vision system, two sets of information
can be obtained: (1) the seam profile which can alternatively
be acquired using active vision and (2) the welding pool pro-
file which can only be acquired with passive vision. More so,
passive vision systems can be used to acquire the seam path
holistically as opposed to active vision which only provides
one point at a time. Numerous techniques have been proposed
for the image pre-processing, seam profiling and weld pool
profiling of the passive vision system. For the pre-processing,
filtering the image with combination of filters such as
Gaussian filter [14, 15], median filter [14, 16–19], Laplacian
[16] filter, etc. to suppress high-frequency noise such as the
strong welding arc light is popular among many authors [14,
15]. For the welding seam profiling, various methods are pro-
posed such as grey-level distribution methods [14, 16, 18, 20]
that consider the darkness characteristic of the welding seam

region, conventional edge detection methods like Canny edge
detection [15, 21–24] and Sobel edge detection [19, 25] that
extract edges in the image from which the seam is then ex-
tracted and template matching method [17, 26, 27] that
searches for a known pattern in an image using a predefined
template which identifies the seam. Some authors proposed
method of detecting the seam edges at sub-pixel accuracy
[28]. For the welding pool profiling, the basic task is detecting
the edges of the welding pool from which the pool dimension-
al features can be determined. Various methods have been
proposed by researchers to detect the pool edges, among
which is the use of conventional edge detection methods
[29–31] such as Canny and Sobel edge detections. Another
notable technique is the histogram analysis methods [32–35]
that analyse the histogram of the welding pool image in order
to obtain the boundaries of the pool as the edges. Grey-level
processing methods [36–42] are also another proposed meth-
od that detects the edges by directly evaluating the pixel grey
values and its neighbourhood. In [38, 39, 42], unlike the tra-
ditional weld pool profiling that considers only the outer edges
of the pool, the grey values of the whole region of the welding
pool are analysed and the centroid position is calculated as a
function of the gradient distribution of the whole weld pool
image. In [9], the grey-level jumps (abrupt change in grey-
level values) which correspond to the edge boundaries of the
pool are determined. A search is performed from the centre of
the image to its exterior, and the pixels with grey-level jumps
are detected as the edge pixels.

In this review, the main focus will be on the active vision
system techniques for extracting the seam geometrical infor-
mation. The system improvements using different image pro-
cessing and pattern recognition algorithmswill be discussed in
detail. In the subsequent sections, the contributions in the lit-
erature made by various authors in the active vision methods
will be presented. The presentation only considers the meth-
odology adopted or developed by different authors as there is
no any avenue to compare or evaluate the effectiveness of
their proposed methods. This is attributed to the fact that a fair
comparison on the accuracy and performance of the available
methods does not only depend on the image processing and
pattern recognition algorithms, but also depend on other fac-
tors such as welding environment condition, workpiece type
used, image sensor type, camera resolution, calibration param-
eters, etc. The recent approaches to overcome these challenges
of improving the system accuracy will also be discussed.

2 Active vision systems

The principle of active vision system is primarily based on
triangulation technique [43] as shown in Fig. 2. An active
vision system comprises an image sensor (camera device),
an external light source and optical lenses and filters. It simply
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involves the projection of a structured light on the welding
joint, capturing the pattern produced on the joint by the light
using a camera device and processing the captured image to
extract the geometrical information of the welding joint. The
nature and pattern of the structured light captured by the cam-
era depend on six factors [44, 45]:

& The type of the welding joint configuration and
preparation: There are basically three types of welding
joint configurations [44] (butt, overlap and corner joint)
as shown in Fig. 3. A lot of other joint configurations
could be formed by the combination of these three config-
urations. Each joint configuration has its own method of
preparation before a welding is performed as shown in
Fig. 3.

& Pattern of the structural laser light source: Two forms of
structured light source patterns can be used (line shape and
2D structured light shapes) as shown in Fig. 4. The use of
different pattern of structured light depends on the geo-
metrical information required to be extracted from the
welding seam. Using a line laser stripe, the position infor-
mation of the line of projection can be extracted as well as
the rotation around the axis of projection [49–53]. In 2D
shape structured light, all positions and also orientations
are measurable along the plane of the 2D shape. Different
2D structural light patterns have been used by many au-
thors: circle [46], multiple lines [48, 54, 55], triangle [44,
56], cross [47, 56], etc.

& Optical properties of the welding part surfaces: Optical
properties of the welding part affect the quality of the
reflected light due to various surfaces optical attributes.
Highly translucent welding part surface with low reflec-
tive index can cause the laser light to be scattered into the
welding joint, thereby appearing distorted to the camera;
this produces an image pattern with a very low signal-
noise ratio [45]. Likewise, a Lambertian surface material

will cause more direct reflection on the surface, and con-
sequently, the camera acquires higher signal-noise ratio
image [45].

& The location of the light relative to the torch: The noise
generated from the torch can make the light pattern invis-
ible and difficult to detect. The torch location is considered
as a source of light, and the light intensity decreases with
square of the distance. It is therefore more challenging as
seam recognition becomes closer to the torch.

& Camera and laser quality: One other major factor affect-
ing the quality of the image is the camera and laser quality.
Because of the high intensity of light produced from the
welding, a camera of high dynamic range is usually rec-
ommended. The laser thickness also assists in receiving a
thin beam or pattern and therefore improves the accuracy.
However, these system requirements make the system
more expensive. Successful image processing techniques
can reduce that cost by relaxing the camera and laser
specifications.

The image of the pattern captured by the camera, in prac-
tice, has some discontinuities and different widths along its
length. These are caused by various surface reflectivities and
possible metal spatter on the joint. Therefore, complex image
processing and pattern recognition algorithms are necessary in
order to effectively extract accurate geometrical information
of the welding joint. The image processing and pattern recog-
nition algorithms can be divided into three sequential sub-
processes as follows:

& Image pre-processing
& Extraction or segmenting of the laser stripe pattern from

the captured image

Fig. 2 Active laser vision system [43]

Fig. 3 Joint configurations from left to right, butt, overlap and corner
joint and their corresponding laser deformations [21]
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& Welding joint feature extraction and profiling

By examining the literature, it was found out that most
authors contribute in these three sub-processes. A careful dis-
cussion of different publications which are sorted according to
its relevance in each of these sub-processes will be carried out
and presented in the following sub-sections.

2.1 Image pre-processing

Before image processing and pattern recognition process, a
compulsory image enhancement and noise removal step are
common practices. This is particularly important in robotic
welding as it entails a lot of noise from the arc glares, welding
smoke and spatters during the welding. Due to the nature of
the noise in welding environment which is usually a salt-and-
pepper natured noise, median filtration was proposed by au-
thors [21, 43, 48, 49, 55, 57–60], to enhance the input image
before performing any process on the input image. The main
advantages of median filtering are that it is more efficient, and
it has good performances in filtering white and long trail
noises [59]. The median filter can also keep the detail infor-
mation such as edge pieces and sharp angles of seam. In me-
dian filtering, the input intensity is replaced by the median of
the intensities contained in its neighbourhood pixels. The size
of the filter used depends on the welding application and the
welding system configuration. Filtering the image with a
Gaussian filter has also been adopted by many researchers

[52, 58, 61]. Due to the fact that Gaussian filter suppresses
high-frequency noise by smoothening the image, employing
this filtering strategy with welding images is not so popular
among researchers. However, some researchers claimed that
the use of a Gaussian filter with a larger kernel size can en-
hance the image [52, 61]. A recent comparison study per-
formed on the use of a median filter and Gaussian filter
showed that median filter can give better enhancement effect
[58]. Further filtration using a morphological filter has been
employed to improve the image quality [55, 58]. After median
filtering, an additional filtration was performed with erosion
and dilation mask which help in supressing the noise [55]. A
comparison study performed on the use of erosion, dilation,
closing and opening filters after median filtering showed that
the closing filter can provide better performance [58].

Due to the dynamics that is involved in industrial environ-
ment such as that of welding, use of conventional filters such
as median and Gaussian filters has not been always the case
among many researchers. Researchers have proposed various
other techniques to filter out noise, among which is the mul-
tiple frame processing that uses images from consecutive se-
quence of frames to filter out noise [3–5, 51, 53, 62, 63]. The
use of such filtering technique is attributed to the fact that the
welding arc and splash spatter noise have the characteristics of
instantaneity. In general, the noise in the welding environment
lasts for less than one sample period, whereas the seam and
laser stripe in the image are stable [63]. The operation involves
taking the smallest intensity of the corresponding pixels in the

Fig. 4 Two-dimensional laser
shapes: a circle [46], b triangle
[44], c cross [47] and d multiple
lines [48]
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images. Sometimes, instead of taking the smallest intensity,
differential frame can also be calculated by subtracting the
grey values of all the corresponding pixels in the images as
shown in Fig. 5 [51]. The differential frame is then
thresholded and used as a mask to suppress noise in the orig-
inal frame. Another approach of multiple frame processing for
image enhancement is the background subtraction technique
[64]. The concept is based on detecting the moving objects
from the difference between the current frame and a reference
frame often called the “background image” or “background
model.” However, due to the complex nature posed by the
welding environment and dynamic nature of foreground and
background noises, adopting a background model is almost
impossible.

Another approach in noise removal for active vision is the
utilisation of colour information. Since the red component
which is commonly used to form the laser strip in an RGB-
coloured image has the highest signal-noise ratio. Selecting
the red plane instead of the traditional conversion of the three
RGB channels to single channel (converting the image to
grey) can enhance the laser stripe object in the image [47].
This approach could be challenging especially during the
welding process whereby welding arc glare noise is usually
white coloured of which, it is saturated in all the three planes
of the RGB image. Hence, this signifies that the white arc
together with red component will appear as a noise.
However, instead of taking the red plane, the image can be

converted into hue saturation value (HSV) colour space first
and then thresholding the HSV channels to choose the red
colour in the image.

Some researchers [57, 58] proposed direct image
thresholding to remove low-intensity noise in the image and
convert the image into binary as an effective pre-processing
step. Recursive use of Otsu thresholding algorithm [65] was
employed to enhance the laser stripe pattern in the input image
by converting the image into a binary image with less noise.
At first, Otsu thresholding is applied to the input image to
segment the input image into two regions. The region above
the Otsu threshold is preserved, and the Otsu thresholding is
applied again to the region below the Otsu threshold value.
This iteration continues until a criteria ε given by (1) is
reached [57].

ε ¼ N J−1ð Þ− N Jð Þ
N Jð Þ

−
σW J−1ð Þ− σW Jð Þ

σW J−1ð Þ
ð1Þ

where N(J − 1) and N(J) are the total pixel numbers of the pre-
vious and the present segmented image, respectively, σW(J − 1)

and σW(J) are the interclass variances of the previous and pres-
ent segmented image. Figure 6 shows the result of segmenta-
tion using Otsu and the recursive improved Otsu thresholding
proposed by [57] under various signal to noise ratios.

Based on the above discussions, it can be observed that
among all these methods stated, the most popular pre-
processing sequence adopted by majority of the authors is
the step of applying a median filter to the original image.
Although there is some studies where the Gaussian filtration
is employed, it is perceived to be not suitable in this applica-
tion as it will suppress the high-frequency component in the
laser line image and cause the loss of information. However,
some of the proposed algorithms may be used together to
produce a more efficient hybrid pre-processing scheme. As
the welding process is not a time critic application and the
availability of high-computational power of today processors,
the hybridisation of the proposed algorithm seems to be fea-
sible. One of such hybrid algorithm can be achieved by com-
bining the multiple frame processing [3–5, 51, 53, 62, 63] and
the median filtration [21, 43, 48, 49, 55, 57–60]. Also, it is
possible to improve the quality of image further by using a
morphological filter as in [55, 58].

2.2 Extraction of laser stripe pattern

Extraction of the laser stripe pattern depends on the structure
and shape of the pattern used. Extracting the pattern involves
generation of a location vector that describes the position of
the laser stripe pattern in an input image. Several methods are
proposed in the literature. In this section, as far as the laser
stripe extraction is concerned, a categorisation of methods that
are reported in the literature will be listed, together with a
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Fig. 5 Principle of binary differential method (BDM) to filter out
distortions caused by spatter [51]
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description of the main processing method. It should be noted
that some of these methods can be classified into more than
one category whose boundaries are not always unambiguous.

2.2.1 Line detection

As the laser stripe pattern geometrically made up of lines,
methods are proposed that involve the detection of the lines
directly from the input image. The combined equations of the
detected lines represent the position of the laser stripe pattern
and, therefore, the seam location. Methods that adopt integral
transform algorithms such as the Radon transform [66] and
Hough transform [67] to detect the laser lines in the image fall
into this category [44, 56, 59]. In these methods, the image is
first transformed into an integral or parametric space and
points are selected to represent the detected lines in the orig-
inal image, based on certain criteria. The researchers [44, 56]
used a triangular-shaped laser stripe pattern whose lines are
extracted using the Radon transform. The Radon transform is
the projection of the image intensity along a radial line orient-
ed at a specific angle. The input image is binarised first and
labelled before applying the radon transform. With the Radon
algorithm, a two-dimensional map of all the lines that can pass
through a certain pixel of the original image is drawn. Each
line is represented on the Radon map, according to its distance
from the original image centre and its orientation (Fig. 7d).
Therefore, the lines that are passing through more pixels have
higher illumination values on the Radon map. By applying a
local maxima algorithm on the Radon map, the line position
and orientation in the real image can be detected. The com-
plete image processing steps for the extraction of laser stripe

(b) Otsu (a) Original image (c) Improved Otsu 

(d) Original image (e) Otsu (f) Improved Otsu 

Fig. 6 a–c Segmentations of
seam image with a noise to signal
ratio of 13. d–f Segmentations of
seam image with a noise to signal
ratio of 18 [57]. a Original image.
b Otsu. c Improved Otsu. d
Original image. e Otsu. f
Improved Otsu

e) Final result 

a) Original Image b) Undistort

c) Remove noise c) Line detection 

Fig. 7 Radon transform laser stripe line detection [44]. aOriginal image.
b undistort. c Remove noise. c Line detection. e Final result
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lines stated in [44, 56] are shown in Fig. 7. In [59], the Radon
transform is also used in detecting a structured laser pattern in
an input image containing a vertically oriented laser stripe.
The Radon transform is used along both the horizontal and
vertical directions. The brightest point in the map gives the
position of the lines in the laser stripe. Despite its success in
detecting lines, the Radon transform is computationally ex-
pensive algorithm.

2.2.2 Pixel maximum intensity

Due to the high-intensity values (higher brightness) at the
region of the laser stripe, many researchers utilise this charac-
teristic while extracting the laser stripe region [51–53, 55, 61,
68]. The idea behind maximum intensity strategy is to consid-
er every row or column separately as a 1-dimentional signal
depending on the orientation of the laser stripe as either hor-
izontal or vertical. For horizontal laser stripe, columns in the
image are treated independently. The row position in each
column that has the maximum intensity value is selected as
a point in the laser stripe. Combining these points from all the
columns together generates the position of the laser stripe
profile in the image. For a vertically oriented laser stripe, rows
are treated independently. In [51], instead of the traditional
maximum intensity strategy of taking one pixel with peak
intensity, multi-peak has been proposed on a vertically orient-
ed laser stripe as shown in Fig. 8. In this method, all pixels in
each row with intensity values greater than certain threshold
are marked and combined to form the laser stripe that has a
thickness of more than 1 pixel. Additional filtration is then
performed on the points based on selection criteria. One cri-
terion is based on the fact that a laser stripe is represented by a
narrow peak while distortions are much larger. Another crite-
rion considers that the spatter noise by the arc light only occurs
in a limited number of rows while laser reaches over large
parts of the image frame. By performing neighbourhood
search with these criteria in mind, the unwanted points are
filtered out and a 1-pixel width laser stripe is extracted. In
another related studies, when multiple pixels with the same
maximum intensity values were encountered, the selection of
the middle pixel among the multiple pixels is proposed as the
chosen laser stripe profile location by some researchers [52,
61]. Because noisy maximum intensity pixels caused by false
imaging might be selected, the researchers in [53] propose
discarding some selected maximum intensity pixels based on
temporal and spatial continuity constraints and the stripe pro-
file is obtained using linear interpolation and Gaussian filter-
ing. Maximum intensity method is not always limited to
extracting a single laser line in an image; the researchers in
[55] extract five laser stripe lines using maximum intensity
method as shown in Fig. 9a. In the figure, the line AA− rep-
resents a selected column of which all the five laser lines pass
through. The lines are extracted by sorting the intensity values

sequentially in descending order in each column and then
taking the first five values as the position of the five lines in
the column. In Fig. 9b, the intensity distribution of the column
AA− is shown. The five maximum peaks in Fig. 9b represent
the line position in the column AA−. The performance of the
pixel-based maximum intensity algorithms is critically
depended on the noise level, and therefore, it is crucial to
remove the noisy artefacts before applying the method.

2.2.3 Sub-pixel maximum intensity

Some active vision systems may require higher measurement
accuracy; this is why some researchers propose extracting
maximum or peak position in each column or row at a sub-
pixel accuracy, instead of the traditional maximum intensity
that considers the maximum intensity of a pixel [69–72]. The
distribution of the laser stripe should, in theory, be Gaussian
distribution. But, in practice, owing to the behaviour of the
camera sensors, the highly noisy environment and, to imper-
fections in the laser stripe, the observed cross section of the
stripe may not be Gaussian. Nevertheless, to accurately detect
the peak, methods such as Gaussian approximation [69], cen-
tre of mass [69], linear interpolation [69], Blais and Rioux
[73] detectors and parabolic estimator [69] are used. The dis-
tinction among these methods depends on the assumption of
the intensity distribution of the laser stripe. Gaussian
approximation and centre of mass assumed that the spread
of intensity values across the stripe conform to a Gaussian
distribution. Linear interpolation assumes that a simple, linear
relationship defines the spread of intensity values across the
stripe. Assuming a horizontal laser stripe orientation, the peak
position can be calculated by taking the three maximum in-
tensity values and applying Eq. (2) for Gaussian approxima-
tion and Eq. (3) for centre of mass to calculate the position of
the peak.

Gaussian approximation : xpeak

¼ x−
1

2

ln cð Þ−ln að Þ
ln að Þ þ ln cð Þ−2lnb

� �
ð2Þ

Centre of mass : xpeak ¼ xþ c−a
a þ b þ c

ð3Þ

where a, b and c are the values of the three maximum intensity
values with b being the maximum value. x is the column
position of intensity b (the maximum) for the laser stripe. xpeak
is the column position of the peak of laser stripe in a particular
row. It can be observed from (3) that the centre of mass is
simply a weighted average of the three maximum intensities.
A comparative analysis on the effectiveness and accuracy of
these sub-pixel methods was performed, and the results
showed that the methods display performance within the same
range [69]. Similar studies suggest that Gaussian
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approximation gives better performance especially when the
noise level or stripe width decreases [74]. However, it was
found that traditional maximum pixel intensity when com-
bined with centre of mass gives the best accuracy [71]. In
another study [70], the centre of mass method was employed
to detect the peak at sub-pixel accuracy in a small window of

size W around the maximum intensity using Eqs. (4) and (5)
instead of using the three maximum intensities [69]. This
method minimises the influences of reflection or surrounding
light as claimed by the authors. Additionally, the detection
process only holds if the difference between the light intensity
of the maximum and the background is significant, i.e. higher
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than a threshold T. The background intensity is calculated by
averaging the pixels outside the detection window which con-
tains the maximum.

P j ¼ CM j Wð Þ if I i jmax; j
� �

−Bj
� �

> T
none if I i jmax; j

� �
−Bj

� �
≤T

�
: ð4Þ

CM j Wð Þ ¼
X i jmaxþ W

2

i jmax− W
2

I i; j½ �i
X i jmaxþ W

2

i jmax− W
2

I i; j½ �
ð5Þ

where Pj is the position for the laser stripe at column j and
CMj(W) is the centre of mass of the window with a size W at
column j. Bj is the good estimation of the background level for
column j. imax

j represents the row where the maximum light
intensity is located for column j. Using this method, the laser
stripe positions of some rows will be missing; as such, the
authors propose a special method of filling missing positions
considering contextual information around the missing points.

Further studies propose the computation of the zero cross-
ing point of the first derivative of each laser stripe image row
to obtain an estimation of the peak sub-pixel position [45, 75].
The first derivative of the input image is filtered first with
finite impulse response (FIR) filter before the sub-pixel peak
position is determined by the zero crossing point [76]. In an-
other study [72], the authors consider the laser stripe width in
implementing their proposed adaptive stripe peak segmenta-
tion algorithm with a sub-pixel precision. As with all other
sub-pixel peak determination algorithms, the proposed algo-
rithm treats each column in the image independently. For each
column i, the laser stripe position is determined by first calcu-
lating its histogram hi and extracting all peaks in the histogram
greater than a threshold Ts which value determine for each
column histogram hi using the algorithm shown in Table 1.
After thresholding, multiple peak groups can be found. A cost
function defined by Eq. (6) is calculated for these peak groups.
Then, the peak group whose cost is the smallest will be select-
ed and the sub-pixel position will be extracted from the select-
ed peak group using the centre of mass method [69].

costpeak ¼ ws−Wmj j
Ws

þ gs−gmaxj j
gmax

ð6Þ

where hi denotes the histogram of the ith column, Wμ denotes
the standard stripe width, and Wσ denotes its tolerance. Cmin

denotes the minimum contrast between stripe and back-
ground, and Gmin denotes the minimum reasonable grey. ws

and gs are the peak group width and grey value, respectively.

2.2.4 Global thresholding

Some researchers propose the use of global thresholding on
the input image to segment the laser stripe in the image [21,

43, 49, 60]. In [43], a threshold of 252 and a pixel following
algorithm were proposed to denoise the thresholded image by
taking into consideration the bandwidth of the laser in pixels.
In another study, a global threshold of 90 was used to produce
a binary image that distinctly separates the laser from the
background [49]. The use of edge detection is proposed on
the input image which is followed by the thresholding of the
edge image in order to segment the laser stripe [50]. The
authors in [4, 5] propose a thresholding based on intensity
distribution of the pixels in the input image. The algorithm
involves calculating the grey value of the image background
by averaging the grey values of pixels along a logical grid
lines spaced 10 pixels apart in both horizontal and vertical
directions as described in (7).

B ¼ 1

WM 1 þ HM2

XW
i¼1

X
j¼1

M1

I i; 10 jð Þ þ
X
i¼1

M2XH
j¼1

I 10i; jð Þ
 !

ð7Þ
where W is the width of image and H is the height of image;
M1 = Int(H/10); M2 = Int(W/10); I(x, y) is the grey level of the
image. Using a threshold T1, the four points which define the
laser stripe region (Xmin, Xmax, Ymin and Ymax) are segment-
ed using (8).

Xmax ¼ max i : I i; 10 j1ð Þ−B > T1ð Þ∨ I 1Oi1; jð Þ−B > T1ð Þf g
Xmin ¼ min i : I i; 10 j1ð Þ−B > T1ð Þ∨ I 1Oi1; jð Þ−B > T 1ð Þf g
Ymax ¼ max j : I i; 10 j1ð Þ−B > T1ð Þ∨ I 1Oi1; jð Þ−B > T1ð Þf g
Ymin ¼ min j : I i; 10 j1ð Þ−B > T1ð Þ∨ I 1Oi1; jð Þ−B > T 1ð Þf g

1≤ i≤W ; 1≤ j≤H ; i1 ¼ INT
i
10

� �
; j1 ¼ INT j=10ð Þg

ð8Þ

In [77], windowing thresholding of the input image was
performed to extract the laser stripe. Avertical 3-pixel window
was used. The laser stripe is a horizontal oriented laser stripe.
The window moves from top to bottom along five
predetermined columns in the image, and the sum of the grey
level of the window is compared with a threshold value.When
the grey-level sum is greater than the threshold value, the point
is set as an upper point of laser stripe at that column. Five sets
of points obtained from the five columns define the upper part
of the laser stripe. The lower part is obtained by moving the
window from bottom to top. In [105], the threshold is deter-
mined based on the statistical distribution of the grey-level

Table 1 Stripe segment threshold determination

Algorithm 1: Stripe segment threshold determination 
Input: hi
Output: the existed Ts

1. Initialization: find the largest gray value gmax which 
makes the hi(gmax) ≠ 0; sum=0;

2. Threshold determination

for k=gmax to 0

If (sum ≥ W + W ) OR (gmax * k > Cmin ), then stop loop

End for
3. Post processing

If( k > Gmin) then return Ts = k; else no Ts exists.

Source: [71]
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values in the image to segment a horizontally oriented laser
stripe. The grey level with the least number of pixels and
closest to the highest grey value is chosen as the threshold.
Single-point filtering is further performed to remove some of
the noisy isolated points. The resulting laser stripe is further
reduced to 1-pixel thickness by finding the edges in the image
and taking the average of the edges in a column as the position
of the laser stripe. Despite the reported implementations in the
literature, the approaches based on the thresholding suffer
from the fact that determination of the proper threshold value
is not straightforward. These distinct characteristics of the
thresholding prevent this approach from being commonly ac-
cepted practice in the segmentation of laser stripe in active
vision systems.

2.2.5 Pixel projections

Laser stripe extraction by projection of the grey intensity or
gradient values along the horizontal and vertical directions is
another proposed technique [62, 63, 78]. In [62], region of
interest (ROI) from the input image is first determined by
thresholding the horizontal and vertical projections of the in-
put image. Then, edge points corresponding to the boundary
of the laser stripe are detected based on the criteria that the
point with the largest gradient of grey value is the edge point
in each row and column of the input image. Two edge points
(upper edge point with the highest gradient value and lower
edge point with the lowest gradient) were obtained along the
vertical direction. Similarly, another two edge points (left edge
point with highest gradient value and right edge point with
lowest gradient value) were also obtained along the horizontal
direction. The position of the laser stripe is then determined as
the midpoints of the upper edge points and lower edge points
in case of vertical while left and right edge points are deter-
mined in case of horizontal. In [78], unlike in [62], instead of
projecting the intensity values, only the projection of the gra-
dient values is performed. The upper edge points are then
considered as the profile point of the laser stripe. Similarly,
in [63], the projections are computed by skipping 1 pixel in
both the horizontal and vertical directions in order to compute
the ROI faster. An adaptive thresholding is then performed on
the computed projections to determine the position of the laser
stripe.

2.2.6 Statistical models

Most of the previously stated methods extract the laser stripe
line from the perspective of filtering or noise suppression.
However, the invariable illumination intensity along the laser
stripe can be a good factor to consider in extracting the laser
stripe. This is why some researchers formulate the image into
sequence of states in space so that noisy states can be removed
based on its transition at a particular point in space. The use of

state-based statistical models such as spatial cascaded hidden
Markov models (S-HMM) [79] to filter out noisy states and
localise the region of the laser stripe in an image has been
proposed by researchers [47, 80, 81]. The s-HMMwas imple-
mented after converting the input image into an edge image
using Canny edge detector [82]. The edge pixels are then fed
to the S-HMM as input observations or states as shown in
Fig. 10. The output of the s-HMM gives the extracted laser
stripe.

2.2.7 Second derivative filter

When the laser stripe is horizontally oriented, the stripe is
believed to be parallel to the rows of the image. The laser
stripe region in this context can be enhanced if convolved with
a spatial filter that only operates in the direction of the image
columns and yields a maximum response to the centre posi-
tion of the stripe cross section. The Laplacian of Gaussian
(LoG) filter [83] operates in this manner. In [84, 85], the input
image is convolved with a discrete approximation of the sec-
ond derivative Gaussian filter, given by (9) that depends on
the thickness of the laser stripe and operates in the direction of
the columns of the image. Because the laser stripe used by the
authors is a horizontally oriented laser stripe, performing this
technique can enhance the discrimination of the laser stripe
from the other possible brightness sources such as arc glares
and welding spatters. After applying (9) to the input image,
the point along every column that corresponds to the maxi-
mum value among the filter responses in that column is ex-
tracted to form the position of the laser stripe in that column.

R i; jð Þ ¼
X 3=2

Lw

m¼−3=2Lw
wmI i; jþ mð Þ ð9Þ

where I(i, j) denotes the pixel value at the image coordinates
(i, j) and wm is a filter coefficient that has a Mexican hat-like
distribution. Lw is the estimated thickness of the laser stripe.

2.3 Welding joint feature extraction and profiling

The third step after the laser stripe profile extraction is the
feature extraction. The feature extraction step involves the
extraction of the relevant point from a laser stripe that
identifies the deformed structural pattern on the welding
joint. The feature points denote the turning points at the
corners of the welding joint. The number and type of the
turning points extracted depend on the welding joint con-
figuration as shown in Fig. 11. The basic task in feature
extraction is to identify these turning points. In an ideal
condition, extracting these points could be a simple task
of performing turning points/corner detection. However,
in reality, the laser stripe extracted is far from its ideal
shape. The straight lines are never straight, there might
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be discontinuities along the lines, and noise could sup-
press these corners into higher or lower than their actual
position. This makes it more challenging to actually detect
these points. Researchers have proposed methods to effi-
ciently detect these corners which will be reviewed in the
following sub-sections.

2.3.1 Turning angle computation

The feature points are located along the laser stripe at the
corners where the turning angle between these points and
their neighbours is relatively large. This makes it possible
to extract the points based on the characteristic nature of
the turning angle [55, 57]. In [55], ‘split and merge’ [86]
algorithm that filters out points based on their turning
angles is used with template matching to extract the
points. With the split and merge method, approximate
straight line is generated from three points according to
the turning angle between the points. Points in the stripe
profile are scanned by considering three points at a time.
A point is discarded as noise if the turning angle between
the two lines joining the three points exceeds certain
threshold as shown in Fig. 12. Tracking feature points
are extracted by comparing the generated straight line
with a welding joint pre-defined template. In [57], similar
strategy of selecting the feature point based on the com-
puted turning angle of a point is proposed. The feature
points are determined by a set of rules based on the posi-
tion and value of the turning angle at each point. The joint
type used in the research is V-groove joint with three
points (points 1, 2 and 3) as shown Fig. 11c. For each
of the feature point, there exist associated rules that define
the nature of the point as shown in Fig. 13. For example,
the rules state that the position of the feature point 1 (x0,
y0) must be on the right side of the starting point of the
laser stripe; it is a turning point and its turning angle β
must be less than 0 and greater than 90, and there is a

right-side broken point below it within the range of 2 mm;
the broken point should have a turning angle within [0,
90]; it is a left-side broken point, and its neighbouring
point (x, y) should certify the criteria x≥ x0, y≥ y0. Similar
rules hold for the remaining two points. The points that
certify these respective criteria are selected as the feature
points.

Fig. 10 Illustration of an s-HMM for stripe extraction. a Edge image and
b illustration of the three steps of the s-HMM. The steps are from three
columns of edge pixels of a, where boxes represent edge pixels and

square points represent centre points of edge pairs, i.e. state ω of the s-
HMM. Pij is the transition probability from state i at step (t–1) to state j at
step t. c Extracted stripe skeleton [47]
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(c) V Groove  
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(d) Lap joint  
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2 

Fig. 11 Different welding joint feature points. a U groove. b Square
groove. c V groove. d Lap joint. e Corner or fillet joint
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2.3.2 Image derivative

The extracted laser stripe can be treated as a one-dimensional
signal with a discrete time steps. The feature points in the
stripe can be considered as irregularities in the relative flow
of the signal. Use of image derivatives [87] to detect these
variations is prominent among researchers [3–5, 52, 53, 68,
77]. In [52], a method based on the second central difference
(second CD) of the row index of each point in a horizontally
oriented laser stripe profile is proposed. Second central differ-
ence is a discrete approximation of the first derivative. The
second CD is computed for all the points in the laser stripe
using (10). Based on the values of the second CD, a point
scanning algorithm is proposed that searches for points that
meet predefined criteria. The points obtained are selected and
marked as the feature points.

CD Rið Þ ¼ Riþ1− Ri−1

2
ð10Þ

where Ri is the row index of point i and Ri + 1 and Ri − 1 are the
row indexes of the next and previous points in the laser stripe.
In [77], a similar technique of adopting second CD to detect
the feature points is proposed. The distinction comes from the
computation of the CD itself. Instead of using (10) to compute
the CD, (12) is used which is based on the accumulated grey-
level intensity values in a column. Also, instead of the single-
point search, a group of points that have CD value greater than
70 % of the maximum CD value is selected and the centre

point in the group is selected as the position of the feature
point.

CD ið Þ ¼ I i−kð Þ þ I iþ kð Þ−2I ið Þ
2k

ð11Þ

where I(i) is the grey-level sum of ith column in the laser stripe
and 2k is the differential range for the CD. Experimentally, the
authors established that a value of 6 is the appropriate value of
the differential range irrespective of the weld joint gap. Instead
of considering the variation in the relative positioning of the
laser stripe points in detecting the feature points as in [52, 77],
the intensity values of the stripe can be equally used [3–5, 53,
68]. The method involves computing the second derivative of
the laser stripe, searching for the local minima and maxima of
the derivative and selecting the points that correspond to the
local maxima and minima as the feature points. In [3–5, 53],
the Hough transform [67] is first employed to find a line that is
approximately parallel to the laser stripe orientation and con-
sider it as a reference line. The points from the laser stripe that
are also located on the line are selected as the feature points in
the welding workpiece plane. Extrema from the second deriv-
ative of the laser profile are then selected as the feature turning
points. The process is depicted by Fig. 14.

2.3.3 Rule base

Most of the previously stated methods are applicable to
only a specific joint geometry. However, researches have

Tracking Point

Discarded Point

Fig. 12 Advance split and merge
algorithm for the plane surface in
a welded joint [55]

270

90

Coordinnated of pixels 

270 990 90 >> −90

(a) Point 2 (b) Point 1 (c) Point 3 

Fig. 13 Definition of feature
points for V groove joint [57].
Points 1, 2 and 3 are defined in
Fig. 11. a Point 2. b Point 1. c
Point 3
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proposed rule-based approaches that can detect multiple
joints geometry in one algorithm [71, 72, 84, 85, 88, 89].
The method involves approximation of the extracted laser
profile into line segments. The line segments are labelled
according to predefined welding segments. The labelled

line segments are systematically combined to form a fea-
ture string. Based on certain defined criteria and classifi-
cation methods, the feature string is interpreted to one of
the known pre-defined welding joint type and the feature

Fig. 14 Profile extraction of the
laser stripes: a original image, b
typical intensity distribution of
column pixels, c extracted laser
profile and d second derivative of
the profile in c [53]

Table 2 Line primitives and junction primitives

Label Description

Line 

Primitives
Speckle 

surface

Junction 

Primitives

cp

cu

cd

gp

gu

gd

up

uu

ud

ap

au

ad

dp

du

dd

bp

bu

bd

Source: [84]

Table 3 Generic models of typical joints

Type Reference pattern language profile

Fillet <surface><cu><surface>

Butt <surface><gp><surface>

<surface><dp><surface>

<up><surface>

<surface><cd><surface><cu>

<surface><up><surface>

<surface><dp><surface><cu>

<surface><cd><surface>

<surface><cd><surface><cu>

<surface><cu><surface><cd>

<surface>

Lap <surface><cd><surface>

<cu><surface>

<surface><cu><surface>

<cd><surface>

<surface><dp><surface>

<surface><up><surface>

Vee <surface><cd><surface><cu>

<surface><cd><surface>

Source: [84]
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Table 4 Executive summary of techniques for active vision

Method Comments and relative advantages

Image pre-processing

Median filtering [21, 43, 48, 49,
55, 57–60]

This method is used by most researches, because it can keep the detail information such as edge pieces and sharp
angles of seam. Also, it is the most effective in filtering typical welding image noise (predominantly salt-and-
pepper noise).

Gaussian filtering [52, 58, 61] Although among the most common and fundamental noise filters used in industrial applications, very few
authors used this method. This is because it is not suitable for filtering laser images, as it can suppress the high-
frequency component in the laser line image resulting in loss of useful positional information.

Multiple frame processing [3–5,
51, 53, 62, 63]

This method is mostly useful as an intermediary pre-processing step that can be followed by an additional
filtering step. This is because it does not consider the spatial relationships of the local texture in the image that
defines the laser pattern but rather considers the relative temporal texture information of multiple images.

Colour processing [47] Although this method is ignored by most researches, this could be a potential pre-processing step to localise the
laser pattern region in the image as it filters all colours except the characteristic red colour. However, this
method may be somehow redundant when a narrow band optical filter is installed on the camera. This is
because they are both useful in producing segmented red coloured image.

Thresholding [57, 58, 65] This method may be effective when a suitable setup of optical devices is used that produces an image with an
enhanced laser pattern. Such that, the laser pattern will have a relatively higher intensity that can be easily
thresholded. However, optical devices are usually very expensive and very difficult to adjust to perfection.

Extraction of laser stripe pattern

Line detection [44, 56, 59] This method is useful in detecting 2D laser pattern with multiple lines in an image. It can be recommended for a
fillet welding seam joint because the deformations of fillet joint usually are made of crossing lines as shown in
Fig. 11e. However, this method is computationally expensive and can easily fail when the structural lines have
multiple discontinuities. It can also falsely detect longitudinally shaped coherent noise due to arc light spatter
in an image as a line.

Pixel maximum intensity [51–53,
55, 61, 68]

This is the most widely used laser stripe extraction method due to its simplicity and effectiveness. It is effective
because it exploits the obvious characteristic of a laser stripe image which is high-intensity values (higher
brightness). When combined with some custom pixel operations that employ pixel spatial and temporal
relationships, it can produce a promising result.

Sub-pixel maximum intensity
[69–72]

This is suitable for systems that need higher measurement accuracy. It provides an additional layer of processing
and accuracy over the pixel maximum intensity method. However, with a very high-resolution cameras or
wider welding seams, this method may give results that are almost similar to traditional pixel maximum
intensity. This is because the laser pattern contains lesser position information.

Global thresholding [21, 43, 49,
60]

As with any thresholding technique, this method lacks universality and strongly depends on the quality and
nature of the image under processing. In all the researches that fall in this category, the thresholding is
performed with a value that is systematically computed. Although it was successful to some few researches,
the distinct characteristics of the thresholding prevent this approach from being the commonly accepted
practice in the segmentation of laser stripe in active vision systems.

Pixel projections [62, 63, 78] This method is similar to pixel intensity approach as both detect pixels with higher brightness. The method could
bemore accurate due its additional edge detection step after the maximum pixel selection. However, the nature
of the laser stripe uniform intensity distribution makes operations like edge detection unnecessary.

Statistical model [47, 80, 81] With this method, the laser is extracted based on the notion that the laser can be modelled as series of states in
space that can be analysed statistically. This method could be robust to noises that appear at an unusual location
outside the laser region. However, it strongly relies on the state modelling step. As proposed by some of the
authors, the states can be generated from the image pixel edges. Edge detection sometimes can produce broken
edges which may lead to many false states that may affect the result of the final extracted laser.

Welding joint feature extraction and profiling pattern

Turning angle computation [55,
57]

The turning angle is one of the unique characteristics that identify the feature points due to their strategic location
along the laser stripe. Hence, this method can be effective in detecting the feature points. However, it is too
localised, as it considers only two neighbours around a profile point. This algorithm performance can be
affected when there are locally organised noisy points in the laser stripe. The performance may be improved if
the turning angles for group of pixel neighbours are also considered.

Image derivative [3–5, 52, 53, 68,
77]

This method shows a more appealing approach of detecting the feature points. This is because the extracted
profile is treated as one-dimensional signal that can be analysed with some 1-D signal processing techniques
such as the image derivatives with the feature points treated as noise. This method presents the possibilities of
using some other similar 1-D signal processing techniques that could be much more effective in detecting the
feature points.

Rule base [71, 72, 84, 85, 88, 89]. This is one of the oldest and relatively robust approaches for the feature point extraction. It is effective because it
employs prior knowledge in determining the location of the feature points. It also considers both the local and
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points are extracted from the joint. In [84], the laser stripe
profile is grouped into set of connected segments based
on three-point connectivity. The connected segments are
recursively approximated using polygonal line approxi-
mation method [90] into line segments. The generated line
segments are refined and labelled by syntactic analysis of
the segments. During the syntactic analysis, each line seg-
ment and junction between two neighbouring line seg-
ments are assigned a label in accordance with a pre-
defined primitive vocabulary as shown in Table 2. The
labelled segments form a feature string consisting of
words. The string is further refined using some predefined
production rules. Finally, the string that survives the revi-
sion process is matched to the pre-defined generic models
of typical weld joints shown in Table 3. In [88], similar
approach was adopted with less primitive vocabulary and
production rules. Their analysis was based on using one-
dimensional laser spot scanner image pattern [88] instead
of the two-dimensional laser [84]. The authors in [84]
claim that their algorithm has an improved performance
over [88] from the viewpoint of robustness to noise and
accuracy. In [71], after approximating the line segment for
an extracted V-groove laser stripe profile, seven features
are extracted from each segment which includes features
such as length of segment, gradient and the distance to
significant profile elements. These seven features are used
as the inputs to a fuzzy algorithm [91] to calculate the
degrees of membership for the right and left edges of
the groove. The degree of membership and the coordi-
nates of the line segments are then used to calculate the
position of the left and right edges of the groove.
Computing the mean value of left and right edges gives
the groove position. The authors prove that their proposed
fuzzy-based method is less dependent on segmentation
parameters than the conventional rule-based algorithms.

2.3.4 Corner point detection

As stated previously, the feature points are strategically locat-
ed at the corners along the laser profile as shown previously in
Fig. 11. Hence, these points can be extracted by detecting
corners in the extracted laser stripe. One notable approach
for corner detection is by slope analysis [21, 58, 92]. From
Fig. 11c, it can be observed that the V-groove has the left point
(point 1), right point (point 2) and middle point (point 3). In
[21, 92], only the left point and right point are considered
relevant. The two points are extracted by slope analysis. Left
corner point is extracted by calculating the slope at each point
starting from the left most profile point. The left point is de-
tected at the point where the slope exceeded certain threshold.
Likewise, the right point is detected by starting from the right-
most profile point. Slope at a point is obtained as the average
slope of a few consecutive points around that point. The slope
is calculated using (12).

kslope ¼ f nð Þ− f n−kð Þ
k

ð12Þ

where k=1 and f(n) are the positions of the point n in the laser
stripe profile. Another approach is by using the Harris corner
detection algorithm [93] in detecting the corners [58].
However, the slope detection gives better performance than
the Harris detector [58].

The corner point for a fillet welding joint configuration is
the point of intersection of the two laser stripe lines as shown
in Fig. 11e. The corner point in fillet weld can be detected by
approximating the extracted laser stripe profile to line seg-
ments and finding the point of intersection of the two lines
as the detected feature point [62, 63, 78]. In [62, 78], the
feature lines are extracted by the combination of random sam-
ple consensus (RANSAC) [94] and least square line fitting
algorithms [95]. RANSAC is applied to extract the two lines

Table 4 (continued)

Method Comments and relative advantages

global information of points before extracting the feature points. However, it is computationally expensive and
strongly depends on the set of rules provided to it. The generation of the rules is also a challenging task as the
rules are manually generated. It is not flexible to implement because any new noise challenge must be
addressed by the rules. This method could be made flexible and much more effective when incorporated with
some artificial intelligence algorithms such as artificial neural network and support vector machines that can
automatically identify the rules.

Corner point detection [21, 58, 92] This approach is closely similar to the turning point approach, as they both involve searching for the corner
points. However, unlike in the turning point approach, the turning angle is not considered; rather general
corner detection algorithms are used. This approach could be better than turning point because it does not
involve primitive thresholding of turning angle to filter out points. However, as with the turning angle
approach, this method is highly localised and can lead to noisy corners that may be due to the stripe profile
orientation especially in wider laser stripe.

Custom pixel-to-pixel operation
[43, 47, 59]

This method is too sensitive to noise due to the pixel-to-pixel operation. It also lacks universality as the pixel local
distribution might vary across different laser stripe profiles. This method could be much more effective when
incorporated with any of the other methods discussed previously.
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followed by least square fitting of the two lines in order to
improve the accuracy of the two lines. The intersection of the
two extracted lines gives the feature point. In [63], a similar
technique is adopted but with the Hough transform [67] which
is employed first instead of RANSAC algorithm.

2.3.5 Custom pixel-to-pixel operation

Due to the non-flexibility of using conventional image pro-
cessing operators, direct pixel-to-pixel search operation on the
laser stripe profile has been adopted by researchers [43, 47,
59]. The operation involves scanning of the extracted profile
point by point, evaluating each point based on its neighbours
and selecting a point that meets certain criteria. In [59], an
algorithm is proposed for extracting the feature points of a
lap joint configuration shown in Fig. 11d. It involves
searching from the leftmost point on the profile until the dis-
tance between the point and the next point is greater than a
certain threshold; the point is marked as the first feature point
(point 1 in Fig. 11d). Equally, the second feature point (point 2
in Fig. 11d) is found by searching from the rightmost point. In
[47], the baseline of the laser stripe is first detected with the
Hough transform. The search is performed with a window
evaluated at each point in the extracted laser profile. The win-
dow is evaluated using (13).

M wð Þ ¼ 1

wj j:σ2
s wð Þ:

X
tϵw

P ω tð Þ
			ω t−1ð Þ


 �
 � !−1

ð13Þ

where w denotes current window with width |w| and σ2 is the
variance of the values of the distance from points on the stripe
to the baseline in the window. s(w) is the number of pixels in
the closed region between the convex line and the base. The
larger the value ofM(w), the more likely the current windoww
contains the feature points. After the windowing operation on
all the laser profile points, the local maximum points are de-
tected as candidate feature point. The final feature points are
detected from the candidate points by a temporal hidden
Markov models (t-HMM) [79].

3 Discussion

In this paper, a review on the studies and contributions in the
active vision methods has been presented. The aim was to
highlight the challenges in the robotic welding and the
methods proposed by the researchers to address these chal-
lenges. As there is no any avenue to fairly compare or evaluate
the effectiveness of their proposed methods, this presentation
only considers the methodology adopted or developed by dif-
ferent researchers. This is attributed to the fact that a fair com-
parison on the accuracy and performance of the available

methods does not only depend on the image processing and
pattern recognition algorithms, but also depend on other fac-
tors such as welding environment condition, image sensor
type, camera resolution, calibration parameters, etc. In
Table 1, although it is not exhaustive in terms of covering all
methods, brief comments and the advantages of the common-
ly employed approaches are highlighted.

4 Conclusion

This paper has attempted to provide a comprehensive survey
of research on vision-based intelligent robotic welding and
also to offer some structural categories for the methods de-
scribed in many papers. The major contribution of this paper
has been to provide a brief source of reference for researchers
involved in intelligent robotic welding. The difficulties and
challenges due to the welding arc light and laser light reflec-
tion and scattering and the different image techniques to over-
come these challenges have been discussed. A comparison
between the different methods has been carried out where
possible. However, because the images obtained in each study
depend on the camera, laser and optics and system configura-
tion, it was not possible in many cases to justify which method
is more accurate or can provide accurate results. Despite these
shortages, we have attempted to relatively compare these ap-
proaches based on their principle of implementation. Among
many notable contributions in this subject, it is evident that
there had been extensive research in the active vision and a
more growing interest in passive vision can also be acknowl-
edged. Collectively, the contributions discussed in this study
have been summarised as in Table 4.

The scope of this study does not comprehensively cover the
passive vision techniques, as such, future research could focus
on the review of the passive vision approaches and contribu-
tions proposed by researchers.
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