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We report on the measurement of the inclusive Υ (1S) production in Pb–Pb collisions at √sNN = 2.76 TeV
carried out at forward rapidity (2.5 < y < 4) and down to zero transverse momentum using its µ+µ−

decay channel with the ALICE detector at the Large Hadron Collider. A strong suppression of the inclusive 
Υ (1S) yield is observed with respect to pp collisions scaled by the number of independent nucleon–
nucleon collisions. The nuclear modification factor, for events in the 0–90% centrality range, amounts to 
0.30 ± 0.05(stat) ± 0.04(syst). The observed Υ (1S) suppression tends to increase with the centrality of 
the collision and seems more pronounced than in corresponding mid-rapidity measurements. Our results 
are compared with model calculations, which are found to underestimate the measured suppression and 
fail to reproduce its rapidity dependence.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

At high temperature and high density, Quantum Chromody-
namics predicts the existence of a deconfined state of strongly-
interacting matter (Quark–Gluon Plasma, QGP) with properties 
governed by the quark and gluon degrees of freedom [1]. This 
state can be studied in ultra-relativistic heavy-ion collisions and 
is expected to be produced when the temperature of the system 
exceeds the critical temperature Tc ≃ 150–195 MeV [2,3]. Among 
the particles which can be measured to investigate the QGP prop-
erties, heavy quarks are of special interest since they are produced 
in the initial parton–parton interactions and they interact with 
the medium throughout its evolution. In particular, the study of 
the heavy quark–antiquark bound state (quarkonium) is expected 
to provide essential information on QGP properties. The colour-
screening model [4] predicts that charmonia and bottomonia (cc
and bb bound states, respectively) dissociate in the medium, re-
sulting in a suppression of the observed yields. More specifically, 
the quarkonium binding properties are expected to be modified 
in the deconfined medium and, out of the various charmonium 
and bottomonium states, the less tightly bound might melt close 
to Tc and the most tightly bound well above Tc [5]. A sequential 
suppression pattern with increasing temperature is then expected 
to be realized. Based on results from quenched lattice QCD [6,7], 
the most tightly bound bottomonium state, Υ (1S), is predicted 
to melt at a temperature larger than 4 Tc, while the Υ (2S) and 
the Υ (3S) should melt at 1.6 and 1.2 Tc, respectively. The melting
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temperature for the J/ψ charmonium state is expected to be close 
to that of the Υ (2S) and the Υ (3S) bottomonium states. In the 
case of recent spectral-function approaches with complex poten-
tial [8,9], the obtained dissociation temperatures are lower.

In the charmonium sector, a significant suppression of the J/ψ
yield has been observed at SPS [10–12] (

√
sNN = 17.3 GeV), RHIC 

[13,14] (
√

sNN = 39, 62.4, 200 GeV) and LHC [15–17] (
√

sNN =
2.76 TeV) energies. A qualitative description of the results can be 
obtained assuming that in addition to the dissociation by colour 
screening, a regeneration process takes place for high-energy colli-
sions. The regeneration mechanism is particularly important at LHC 
energies, where the multiplicity of charm quarks is large [18–22]. 
The ψ(2S) charmonium state has lower binding energy than the 
J/ψ one and cannot be produced by the decays of higher mass 
states. At SPS energies [23], the suppression of ψ(2S) yield is about 
2.5 times larger than for the J/ψ state. With the high collision en-
ergies and luminosities recently available at RHIC and LHC, it is 
also possible to study bottomonium production in heavy-ion colli-
sions [24–28]. Compared with the J/ψ case, the probability for the 
Υ states to be regenerated in the medium is much smaller due to 
the lower production cross section of bb pairs [29]. However, the 
feed-down from higher mass bottomonia (between 40% and 50%
for Υ (1S) [30]) complicates the data interpretation. Furthermore, 
the suppression due to the QGP must be disentangled from that 
due to Cold Nuclear Matter (CNM) effects (such as nuclear mod-
ification of the parton distribution functions or break-up of the 
quarkonium state in CNM) which, as of now, are not accurately 
known neither at RHIC energies [24] nor in the forward rapid-
ity regions probed at LHC. At RHIC, the inclusive Υ (1S + 2S + 3S)
production has been measured in Au–Au collisions at mid-rapidity 
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by the STAR [24] and PHENIX [25] Collaborations. The observed 
suppression is consistent with the melting of the Υ (2S) and Υ (3S)
states. At LHC, the CMS Collaboration has measured the mid-
rapidity production of bottomonium states in Pb–Pb collisions. The 
Υ (1S) yield is suppressed by approximately a factor of two with 
respect to the expectation from pp collisions obtained by scaling of 
the hard process yield with the number of binary nucleon–nucleon 
collisions. Moreover, the Υ (2S) and the Υ (3S) are almost com-
pletely suppressed [26,27].

In this Letter, we report on the inclusive Υ (1S) production at 
forward rapidity (2.5 < y < 4) and down to zero transverse mo-
mentum (pT > 0) in Pb–Pb collisions at √

sNN = 2.76 TeV. The 
measurement was carried out in the µ+µ− decay channel with 
the ALICE detector. The yield of Υ (1S) in Pb–Pb collisions relative 
to pp, normalized to the number of nucleon–nucleon collisions at 
the same energy (nuclear modification factor, RAA) is reported in 
two centrality intervals and two rapidity intervals. The results are 
compared with CMS Υ (1S) mid-rapidity data [27] and with model 
calculations [31,32].

2. Experimental apparatus and data sample

The ALICE detector is described in detail in reference [33]. In 
this section, we briefly summarize the main features of the de-
tectors used for this analysis. The muon spectrometer, covering a 
pseudo-rapidity range −4 < ηlab < −2.5 in the laboratory frame,1

consists primarily of a tracking apparatus composed of five sta-
tions of two planes of Cathode Pad Chambers (CPC) each, a dipole 
magnet delivering a 3 T·m integrated magnetic field used to bend 
the charged particles in the tracking system area and a triggering 
system including four planes of Resistive Plate Chambers (RPC). 
The detector incorporates a 10 interaction length front absorber 
used to filter the muons upstream of the tracking apparatus and a 
7.2 interaction length iron wall located between the tracking and 
the triggering systems. The iron wall plays an important role in 
the muon identification, since it stops the light hadrons escap-
ing from the front absorber and the low momentum background 
muons produced mainly in π and K decays.

The V0 detector [34] consists of two scintillator arrays covering 
the full azimuth and the pseudo-rapidity ranges 2.8 < ηlab < 5.1
(V0-A) and −3.7 < ηlab < −1.7 (V0-C). Both scintillator arrays have 
an intrinsic time resolution better than 0.5 ns [34,35] and their 
timing information was used for offline rejection of events pro-
duced by the interactions of the beam with residual gas (or beam-
gas interactions).

The Zero Degree Calorimeters (ZDC), which are located at 114
meters on each side of the ALICE interaction point, were used to 
reduce the beam-halo background by means of an offline timing 
cut [35]. Another cut on the energy deposited in the ZDC sup-
presses the background contribution from electromagnetic Pb–Pb 
interactions.

Finally, the Silicon Pixel Detector (SPD) is used to reconstruct 
the primary vertex. This detector consists of two cylindrical layers 
covering the full azimuth and the pseudo-rapidity ranges |η| < 2.0
and |η| < 1.4 for the inner and outer layer, respectively.

The Minimum-Bias (MB) trigger is defined as the coincidence 
of a signal in the two V0 arrays. The efficiency of such a trigger 
for selecting inelastic Pb–Pb interactions is larger than 95% [36]. 
In order to enrich the data sample with dimuons, the trigger used 
in this analysis requires the detection of an opposite-sign muon 

1 In the ALICE reference frame, the positive z-direction is along the counter clock-
wise beam direction. Thus, the muon spectrometer covers a negative pseudorapidity 
(ηlab) range and a negative y range. In this Letter the results are presented with a 
positive y notation keeping the ηlab values signed.

pair in the triggering system in coincidence with the MB condi-
tion. The muon trigger system selects tracks having a transverse 
momentum, pµ

T , larger than 1 GeV/c. This threshold is not sharp 
and the quoted value corresponds to a 50% trigger probability on 
a muon candidate. Events were classified according to their degree 
of centrality, which is calculated through the study of the V0 sig-
nal amplitude distribution [37]. This analysis was carried out for 
the events corresponding to the most central 90% of the inelastic 
Pb–Pb cross section. In this centrality range, the efficiency of the 
MB trigger for selecting inelastic Pb–Pb interactions is 100% and 
the contamination from electromagnetic processes is negligible. 
The analyzed data sample corresponds to an integrated luminos-
ity Lint = 68.8 ± 0.9(stat)+6.0

−5.1(syst) µb−1 [38].

3. Data analysis

Several steps are necessary to estimate the Υ (1S) nuclear mod-
ification factor. They are described in the following section. Addi-
tional details on the analysis can be found in [28].

Muon track candidates were reconstructed starting from the 
hits in the tracking chambers [39]. Each reconstructed track was 
then required to match a track segment in the trigger cham-
bers (trigger tracklet) and to have a transverse momentum pµ

T >
2 GeV/c. The latter requirement helps in reducing the contribu-
tion of soft muons from π/K decays without affecting muons from 
Υ (1S) decays. A further selection was applied by requiring the 
muon tracks to exit the front absorber at a radial distance from 
the beam axis, Rabs, in the range 17.6 < Rabs < 89.5 cm. This se-
lection rejects tracks crossing the region of the absorber with the 
material of highest density, where multiple-scattering and energy-
loss effects are large and affect the mass resolution. Finally, each 
track was required to point to the interaction vertex in order to re-
ject the contributions from fake tracks and beam-gas interactions. 
Tracks were then combined to form opposite-sign muon pairs and 
a 2.5 < y < 4 cut on the pair rapidity was introduced to remove 
dimuons at the edge of the acceptance.

The raw number of Υ (1S) was obtained by means of a fit to 
the dimuon invariant mass distributions with the combination of 
several functions (see Fig. 1). The background was parametrized as 
the sum of two exponential functions with all parameters let free. 
Such functions reproduce well the data on the large invariant mass 
range of our fits, 5–18 GeV/c2. Monte Carlo simulations show that 
each Υ resonance shape is well described by an extended Crystal 
Ball (CB) function [40] made of a Gaussian core and a power-law 
tail on both sides. The low invariant mass tail is due to non-
Gaussian multiple scattering in the front absorber, while the high 
invariant mass one is due to alignment and calibration biases. In 
the fit, the position and the width of the Υ (1S) peak were left free, 
as they can be constrained by the data themselves. The position of 
the Υ (2S) and Υ (3S) peaks were fixed to that of the Υ (1S) ac-
cording to the PDG [41] mass difference, while their widths were 
forced to scale proportionally to that of the Υ (1S) according to the 
ratio of the resonance masses. This scaling was verified to be ful-
filled in MC simulations. The CB tails are poorly constrained by the 
data and were fixed using MC simulations. Fits were performed on 
the y-integrated, 0–90% centrality distribution, as well as for two 
centrality intervals, 0–20% (central collisions) and 20–90% (semi-
peripheral collisions), or two rapidity ranges, 2.5 < y < 3.2 and 
3.2 < y < 4. The tail parameters depend on rapidity but remain 
constant with respect to centrality. For each of the mentioned in-
tervals, the significance (S/

√
S + B), evaluated on a range centered 

on the Υ (1S) peak position and ranging between ± 3 times its 
width, is larger than five and the signal-to-background ratio larger 
than one. In the case of the Υ (2S) and Υ (3S), the significance and 
the signal-to-background ratio are too low to separate the signal
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Fig. 1. Invariant mass distribution of opposite-sign dimuons with pT > 0 for the different centrality and rapidity intervals considered in the analysis (see text for details). The 
solid blue line represents the total fit function (sum of two exponential and three extended Crystal Ball functions) and the dashed red line is the Υ (1S) signal component 
only. The green dotted line and the magenta dashed–dotted line represent the Υ (2S) and the Υ (3S) peaks, respectively.

from the underlying background. The Υ (1S) mass, as extracted 
from the fit, is consistent with the resonance mass value from the 
PDG [41]. Depending on the considered rapidity range, its width 
ranges from (107 ± 25) MeV/c2 to (159 ± 40) MeV/c2 and is con-
sistent with the results from MC simulations.

In order to estimate the systematic uncertainties on the sig-
nal extraction, the fits were performed over several invariant mass 
ranges and a sum of two power-law functions was used as an al-
ternative parametrization of the background. Concerning the reso-
nance peaks, alternative choices were made for the values of the fit 
parameters that were kept fixed in the default procedure outlined 
above. First, the width and the position of the Υ (2S) and Υ (3S)

were varied by an amount corresponding to the size of the uncer-
tainties on the corresponding fit parameters for the Υ (1S). Then, 
the CB tail parameters were varied according to the uncertainties 
in their determination from fits of the MC signal distributions. For 

each source of systematic uncertainty (background parametriza-
tion, fixed widths and positions as well as tail parameters), the 
Root Mean Square (RMS) of the distribution of signal counts ob-
tained with the different fits was estimated and the corresponding 
relative uncertainties were summed in quadrature.

With these prescriptions the number of Υ (1S) counts is 134 ±
20(stat) ± 7(syst) in the rapidity range 2.5 < y < 4 and 0–90% 
centrality. Depending on centrality and rapidity, the systematic un-
certainties range between 5% and 10%. They are almost constant 
with centrality and reach a maximum in the 3.2 < y < 4 rapidity 
interval.

The measured number of Υ (1S) was corrected for the detec-
tor acceptance and efficiency (A × ε) estimated by means of an 
Embedding Monte Carlo (EMC) method. The MC hits of muons 
from Υ (1S) decays were embedded into MB events at the raw-data 
level. The standard reconstruction algorithm [39] was then applied 
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to these events. This method reproduces the detector response to 
the signal in a highly realistic background environment and ac-
counts for possible variations of the reconstruction efficiency with 
the collision centrality. The pT and y distributions of the generated 
Υ (1S) were obtained from existing pp measurements [42–44] us-
ing the extrapolation procedure described in [45]. EKS98 nuclear 
shadowing calculations [46] were used to include an estimate of 
CNM effects. Since available data favor a small or null polarization 
for Υ (1S) [47–49], an unpolarized production was assumed (in 
both pp and Pb–Pb collisions). The variations of the performance of 
the tracking and triggering systems throughout the data-taking pe-
riod as well as the residual misalignment of the tracking chambers 
were taken into account in the EMC.

Four contributions enter the systematic uncertainty on A × ε: 
(i) the input Υ (1S) pT and y distributions for EMC, (ii) the track-
ing efficiency, (iii) the trigger efficiency and (iv) the matching of 
trigger tracklets with tracks in the tracking system. Type (i) un-
certainties correspond to the maximum difference between A × ε
evaluated by using the default input parametrizations and those 
obtained by using parametrizations corresponding to pp and Pb–
Pb collisions at different energies and centralities. The tracking and 
trigger efficiencies determined from data [39] and from MC simu-
lations were compared to evaluate type (ii) and (iii) contributions. 
For the type (iv) systematic uncertainties, the estimate was per-
formed by varying by a similar amount, in both MC and real data, 
the value of the χ2 cut of the matching probability between re-
constructed tracks in the tracking system and trigger tracklets. The 
comparison of the results of the two approaches provides the un-
certainty.

For Υ (1S) produced in 2.5 < y < 4 with pT > 0, the value 
of A × ε is 0.226 ± 0.025(syst) in semi-peripheral collisions 
and decreases to 0.216 ± 0.024(syst) in central collisions. For 
the centrality-integrated sample the value of A × ε is 0.219 ±
0.024(syst). Depending on centrality and rapidity, the systematic 
uncertainties range between 11% and 12%.

The raw number of Υ (1S), N[Υ (1S)], was corrected for the ac-
ceptance and efficiency, (A × ε), and for the branching ratio of the 
dimuon decay channel, BRΥ (1S)→µ+µ− = 0.0248 ± 0.0005 [41]. The 
yield, YΥ (1S) , was then obtained by normalizing the result to the 
equivalent number of MB events, NMB, via

YΥ (1S) = N[Υ (1S)]
(A × ε) × BRΥ (1S)→µ+µ− × NMB

. (1)

Since the analysis is based on a dimuon trigger sample, the equiv-
alent number of MB events was obtained by multiplying the 
number of triggered events by an enhancement factor, F , which 
corresponds to the inverse of the probability of having the dimuon 
trigger condition verified in an MB event. The F factor averaged 
over the data-taking period is F = 27.5 ± 1.0(syst), where the 
systematic uncertainty reflects the spread of its values observed 
in the different periods of data taking. Within the rapidity in-
terval 2.5 < y < 4, the Υ (1S) yield is YΥ (1S) = (5.2 ± 0.8(stat) ±
0.7(syst)) × 10−5. The values of the yields in the other centrality 
and rapidity ranges considered in the analysis are given in Table 1.

The medium effects on the yields can be quantified by means 
of the nuclear modification factor

RAA = YΥ (1S)

⟨TAA⟩ × σ pp
Υ (1S)

, (2)

where ⟨TAA⟩ is the average nuclear overlap function, which can be 
interpreted as the average number of nucleon–nucleon binary col-
lisions normalized to the inelastic nucleon–nucleon cross section, 
and σ pp

Υ (1S) is the Υ (1S) production cross section in pp collisions 
at 

√
s = 2.76 TeV.

Table 1
Yields for the different centrality and rapidity intervals considered in the analysis. 
Statistical uncertainties are referred to as stat, uncorrelated systematic uncertainties 
as uncorr and correlated systematic uncertainties as corr. When results are inte-
grated on rapidity (centrality), the degree of correlation is mentioned with respect 
to centrality (rapidity).

Centrality Rapidity (Yield ± stat ± uncorr ± corr) × 105

0–20% 2.5 < y < 4 11.3 ± 2.5 ± 0.7 ± 1.3
20–90% 2.5 < y < 4 3.2 ± 0.6 ± 0.2 ± 0.4
0–90% 2.5 < y < 3.2 3.2 ± 0.6 ± 0.4 ± 0.1
0–90% 3.2 < y < 4 1.9 ± 0.4 ± 0.3 ± 0.1

Table 2
Correspondence between the centrality class, the average number of participant nu-
cleons ⟨Npart⟩, the average number of participant nucleons weighted by the number 
of binary nucleon–nucleon collisions ⟨Nw

part⟩, and the average nuclear overlap func-
tion ⟨TAA⟩. The values are obtained as described in [36].

Centrality ⟨Npart⟩ ⟨Nw
part⟩ ⟨TAA⟩ (mb−1)

0–90% 124 ± 2 262 ± 4 6.3 ± 0.2
0–20% 308 ± 5 323 ± 5 18.9 ± 0.6
20–90% 72 ± 3 140 ± 6 2.7 ± 0.1

The number of participant nucleons, ⟨Npart⟩, and the ⟨TAA⟩ cor-
responding to each centrality class used in this analysis were ob-
tained from a Glauber model calculation [36]. Table 2 shows the 
correspondence between the centrality class, ⟨Npart⟩ and ⟨TAA⟩. 
The average number of participant nucleons weighted by the num-
ber of binary nucleon–nucleon collisions, ⟨Nw

part⟩, is also shown. 
The weighted average was calculated for each centrality class ac-
cording to the values reported in [36] for narrow intervals. The 
⟨Nw

part⟩ quantity represents a more precise evaluation of the av-
erage centrality for a given interval, since the Υ (1S) production 
is a hard process and its initial yield scales with the number of 
binary nucleon–nucleon collisions, in the absence of initial-state 
effects.

Due to the limited number of events collected in pp colli-
sions at 

√
s = 2.76 TeV, we cannot measure σ pp

Υ (1S) . Instead, the 
LHCb data [50] are used for the RAA estimate.2 LHCb quotes 
σ pp

Υ (1S) × BRΥ (1S)→µ+µ− = 0.670 ± 0.025(stat) ± 0.026(syst) nb in 
the 2.5 < y < 4 rapidity range. For the rapidity intervals stud-
ied in this analysis (2.5 < y < 3.2 and 3.2 < y < 4) there is no 
exact matching with the rapidity ranges provided by LHCb. There-
fore, a rapidity interpolation was performed to provide the values 
corresponding to our intervals. The LHCb data, with the statistical 
and uncorrelated systematic uncertainties summed in quadrature, 
were fitted with Gaussian or even-degree polynomial functions. 
The functions were then integrated over the required rapidity re-
gion and, for each range, the Υ (1S) pp cross section result is 
the average of the values obtained with the various fitting func-
tions. The associated uncorrelated systematic uncertainty is ob-
tained summing in quadrature the largest fit uncertainty and the 
half spread of the results obtained with the different fitting func-
tions. The correlated systematic uncertainty associated to the LHCb 
values is taken as a further correlated contribution to the uncer-
tainty of our interpolation result. More details on the pp reference 
are given in [28].

The relative systematic uncertainties on each quantity entering 
the RAA calculation are listed in Table 3.

2 When ALICE preliminary results were released, the LHCb data were not yet 
available and σ pp

Υ (1S) was estimated using a data-driven method as explained in [28]. 
Depending on the rapidity interval, the pp reference obtained with this approach 
and the LHCb data [50] differ by 30–35%. Taking into account uncertainties, it im-
plies a change on the modification factor by 1.3 to 2.2σ , depending on rapidity.
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Table 3
Summary of the relative systematic uncertainties on each quantity entering the RAA
calculation for centrality and rapidity ranges. The type I (II) stands for correlated 
(uncorrelated) uncertainties. When two values are given for type II uncertainties, 
the first value is given for the 0–20% (2.5 < y < 3.2) centrality (rapidity) inter-
val, the second one for the 20–90% (3.2 < y < 4) interval. The values of systematic 
uncertainties for the RAA integrated over 0–90% in centrality and 2.5 < y < 4 in 
rapidity are quoted in the last column.

Source Centrality Rapidity Integrated

Signal extraction 5–6% (II) 5–10% (II) 5%
Input EMC distributions 4% (I) 5–7% (II) 4%
Tracking efficiency 10% (I) 9–11% (II) 10%
Trigger efficiency 2% (I) 2% (II) 2%
Matching efficiency 1% (I) 1% (II) 1%
⟨TAA⟩ 3–4% (II) 3% (I) 3%
NMB 4% (I) 4% (I) 4%
BRΥ (1S)→µ+µ− × σ pp

Υ (1S) 4% (I) 4–7% (II) 4% (I) 4%

Table 4
Values of the RAA measured in the centrality and rapidity ranges considered in 
this analysis. Statistical uncertainties are referred to as stat, uncorrelated system-
atic uncertainties are referred to as uncorr and correlated systematic uncertainties 
are referred to as corr.

Centrality Rapidity RAA ± stat ± uncorr ± corr

0–20% 2.5 < y < 4 0.22 ± 0.05 ± 0.02 ± 0.03
20–90% 2.5 < y < 4 0.44 ± 0.09 ± 0.03 ± 0.05
0–90% 2.5 < y < 3.2 0.30 ± 0.05 ± 0.04 ± 0.02
0–90% 3.2 < y < 4 0.29 ± 0.07 ± 0.05 ± 0.02

Fig. 2. Inclusive Υ (1S)RAA as a function of the average number of participant nu-
cleons. ALICE data refer to the rapidity range 2.5 < y < 4 and are shown together 
with CMS [27] data which are reported in |y| < 2.4. The vertical bars represent the 
statistical uncertainties and the boxes the point-to-point uncorrelated systematic 
uncertainties. The relative correlated uncertainties (12% for ALICE and 14% for CMS) 
are shown as a box at unity. The point-to-point horizontal error bars correspond to 
the RMS of the Npart distribution.

4. Results

The pT-integrated nuclear modification factor measured in the 
rapidity interval 2.5 < y < 4 is 0.30 ± 0.05(stat) ± 0.04(syst) for the 
0–90% centrality range and indicates a strong suppression of the 
inclusive Υ (1S) production. The numerical values of the nuclear 
modification factor for the other centrality and rapidity intervals 
considered in the analysis are given in Table 4.

In Fig. 2, the RAA is shown as a function of ⟨Npart⟩. Since our 
centrality intervals are large, a horizontal error bar was assigned 
point-to-point. It corresponds to the RMS of the Npart distribu-
tion [36]. The observed suppression tends to be more pronounced 
in central (0–20%) than in semi-peripheral (20–90%) collisions. The 
CMS [27] data in |y| < 2.4 are shown in the same figure. In cen-
tral collisions, the suppression seems stronger at forward rapidity 

Fig. 3. Inclusive Υ (1S)RAA as a function of ⟨Npart⟩, compared with calculations from 
a transport [31] (top) and a dynamical [32] (bottom) model (see text for details). 
The same conventions as in Fig. 2 are used to show the uncertainties.

than at mid-rapidity. In semi-peripheral collisions, a similar effect 
might be present with a smaller significance.

In Fig. 3, the ALICE results are compared with the calcula-
tions from a transport [29,31] (top) and a dynamical [32] (bottom) 
model. The transport model [31] employs a kinetic rate-equation 
approach in an evolving QGP and includes both suppression and 
regeneration effects. In the model [31], CNM effects were calcu-
lated by varying an effective absorption cross section between 0
and 2 mb, resulting in an uncertainty band used to represent the 
RAA. The transport model clearly underestimates the observed sup-
pression, even if the shape of the centrality dependence is fairly 
reproduced. The dynamical model [32] does not include CNM or 
regeneration effects. The calculation of the bottomonium suppres-
sion is based on a complex-potential approach in an evolving QGP 
described with a hydrodynamical model. It is assumed that the 
initial temperature profile in rapidity is a boost-invariant plateau, 
as inferred from the Bjorken picture [51] of heavy-ion collisions. 
The results obtained with a Gaussian profile corresponding to the 
Landau picture [52] are also shown. Three values of plasma shear 
viscosity to entropy density ratio (4πη/s) are used in the calcula-
tions, including the limiting case where 4πη/s = 1. The model cal-
culations underestimate the measured suppression, independently 
of the temperature profiles and the model parameter assump-
tions adopted. The result calculated with 4πη/s = 1 in the Bjorken 
scenario shows the largest suppression and fairly reproduces the 
shape of the data. It has to be noted that the comparison between 
the RAA values and theoretical predictions depends on whether the 
results are shown as a function of ⟨Npart⟩ or ⟨Nw

part⟩. In particular, 
if ⟨Nw

part⟩ is adopted, the semi-peripheral RAA data point is fairly 
described by both the transport and the dynamical models.

The rapidity dependence of the inclusive Υ (1S) RAA, integrated 
over centrality (0–90%) for pT > 0, is presented in Fig. 4. The ALICE 
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Fig. 4. Inclusive Υ (1S)RAA as a function of rapidity measured in Pb–Pb collisions 
at √sNN = 2.76 TeV by ALICE in 2.5 < y < 4 and CMS [27] in |y| < 2.4, compared 
with the calculations from a transport [29,31] (top) and a dynamical [32] (bottom) 
model (see text for details). Open points are reflected with respect to the measured 
ones and the same conventions as in Fig. 2 are used to show the uncertainties. The 
relative correlated uncertainty on the ALICE measurement is 7% (and is shown as a 
box at unity).

results are compared with those of CMS [27] (|y| < 2.4). The ob-
served suppression seems stronger at forward than at mid-rapidity.

The predictions of the transport model [29,31] are also shown 
in Fig. 4 (top). The model predicts a nearly constant RAA as a func-
tion of the rapidity which is in disagreement with CMS and ALICE 
data. In Fig. 4 (bottom), the data are compared with the calcula-
tions of the dynamical model [32]. All parameter sets used in the 
model calculations predict a rapidity dependence which is the op-
posite of the measured one.

In both the transport and the dynamical models, the inclusive 
Υ (1S) suppression is largely due to the in-medium dissociation of 
higher mass bottomonia. The even larger suppression observed in 
the ALICE data might then point to a significant dissociation of 
direct Υ (1S). However, to reach a more quantitative assessment, 
the role played by CNM effects at forward rapidity should be more 
accurately verified and constrained by data.

5. Conclusions

In summary, we have presented the measurement of the nu-
clear modification factor of inclusive Υ (1S) production at forward 
rapidity (2.5 < y < 4) and down to zero transverse momentum 
(pT > 0) in Pb–Pb collisions at √

sNN = 2.76 TeV. The observed 
suppression of inclusive Υ (1S) seems stronger in central (0–20%) 
than in semi-peripheral (20–90%) collisions and tends to show a 
pronounced rapidity dependence over the large domain covered by 
ALICE (2.5 < y < 4) and CMS (|y| < 2.4). The ALICE inclusive Υ (1S)
suppression is underestimated by the transport model [29,31] as 
well as by the dynamical model [32] considered in this Letter. 

The suppression predicted by the transport model calculations is 
approximately constant with rapidity while the measured one is 
more pronounced at forward than at mid-rapidity. In the case of 
the dynamical model, the calculated rapidity trend is the opposite 
of the observed one. A precise measurement of Υ (1S) feed-down 
from higher mass bottomonia, as well as an accurate estimate of 
CNM effects in the kinematic range probed by ALICE is required 
in order to make a more stringent comparison with models. The 
Υ (1S) production in p–A collisions has recently been measured 
with the ALICE muon spectrometer [53] and should help to gain 
further insight on the size of the CNM effects.
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S. Bjelogrlic 53, F. Blanco 10, D. Blau 96, C. Blume 49, F. Bock 89,70, A. Bogdanov 72, H. Bøggild 76, 
M. Bogolyubsky 108, F.V. Böhmer 88, L. Boldizsár 130, M. Bombara 38, J. Book 49, H. Borel 14, 
A. Borissov 92,129, F. Bossú 61, M. Botje 77, E. Botta 25, S. Böttger 48, P. Braun-Munzinger 93, M. Bregant 115, 
T. Breitner 48, T.A. Broker 49, T.A. Browning 91, M. Broz 37, E. Bruna 107, G.E. Bruno 31, D. Budnikov 95, 
H. Buesching 49, S. Bufalino 107, P. Buncic 34, O. Busch 89, Z. Buthelezi 61, D. Caffarri 28,34, X. Cai 7, 
H. Caines 131, L. Calero Diaz 68, A. Caliva 53, E. Calvo Villar 99, P. Camerini 24, F. Carena 34, W. Carena 34, 
J. Castillo Castellanos 14, E.A.R. Casula 23, V. Catanescu 74, C. Cavicchioli 34, C. Ceballos Sanchez 9, 
J. Cepila 37, P. Cerello 107, B. Chang 118, S. Chapeland 34, J.L. Charvet 14, S. Chattopadhyay 126, 
S. Chattopadhyay 97, M. Cherney 82, C. Cheshkov 124, B. Cheynis 124, V. Chibante Barroso 34, 
D.D. Chinellato 117,116, P. Chochula 34, M. Chojnacki 76, S. Choudhury 126, P. Christakoglou 77, 
C.H. Christensen 76, P. Christiansen 32, T. Chujo 122, S.U. Chung 92, C. Cicalo 102, L. Cifarelli 12,26, 
F. Cindolo 101, J. Cleymans 85, F. Colamaria 31, D. Colella 31, A. Collu 23, M. Colocci 26, 
G. Conesa Balbastre 67, Z. Conesa del Valle 47, M.E. Connors 131, J.G. Contreras 11, T.M. Cormier 80,129, 
Y. Corrales Morales 25, P. Cortese 30, I. Cortés Maldonado 2, M.R. Cosentino 115, F. Costa 34, P. Crochet 66, 
R. Cruz Albino 11, E. Cuautle 59, L. Cunqueiro 68,34, A. Dainese 104, R. Dang 7, D. Das 97, I. Das 47, K. Das 97, 
S. Das 4, A. Dash 116, S. Dash 44, S. De 126, H. Delagrange 109,i, A. Deloff 73, E. Dénes 130, G. D’Erasmo 31, 
A. De Caro 12,29, G. de Cataldo 100, J. de Cuveland 39, A. De Falco 23, D. De Gruttola 29,12, N. De Marco 107, 
S. De Pasquale 29, R. de Rooij 53, M.A. Diaz Corchero 10, T. Dietel 50,85, R. Divià 34, D. Di Bari 31, 
S. Di Liberto 105, A. Di Mauro 34, P. Di Nezza 68, Ø. Djuvsland 17, A. Dobrin 53, T. Dobrowolski 73, 
D. Domenicis Gimenez 115, B. Dönigus 49, O. Dordic 21, S. Dørheim 88, A.K. Dubey 126, A. Dubla 53, 
L. Ducroux 124, P. Dupieux 66, A.K. Dutta Majumdar 97, R.J. Ehlers 131, D. Elia 100, H. Engel 48, 
B. Erazmus 34,109, H.A. Erdal 35, D. Eschweiler 39, B. Espagnon 47, M. Esposito 34, M. Estienne 109, 
S. Esumi 122, D. Evans 98, S. Evdokimov 108, D. Fabris 104, J. Faivre 67, D. Falchieri 26, A. Fantoni 68, 
M. Fasel 89, D. Fehlker 17, L. Feldkamp 50, D. Felea 58, A. Feliciello 107, G. Feofilov 125, J. Ferencei 79, 
A. Fernández Téllez 2, E.G. Ferreiro 16, A. Ferretti 25, A. Festanti 28, J. Figiel 112, S. Filchagin 95, 
D. Finogeev 52, F.M. Fionda 31,100, E.M. Fiore 31, E. Floratos 84, M. Floris 34, S. Foertsch 61, P. Foka 93, 
S. Fokin 96, E. Fragiacomo 106, A. Francescon 28,34, U. Frankenfeld 93, U. Fuchs 34, C. Furget 67, 
M. Fusco Girard 29, J.J. Gaardhøje 76, M. Gagliardi 25, A.M. Gago 99, M. Gallio 25, D.R. Gangadharan 19,70, 
P. Ganoti 84,80, C. Garabatos 93, E. Garcia-Solis 13, C. Gargiulo 34, I. Garishvili 71, J. Gerhard 39, 
M. Germain 109, A. Gheata 34, M. Gheata 58,34, B. Ghidini 31, P. Ghosh 126, S.K. Ghosh 4, P. Gianotti 68, 
P. Giubellino 34, E. Gladysz-Dziadus 112, P. Glässel 89, A. Gomez Ramirez 48, P. González-Zamora 10, 
S. Gorbunov 39, L. Görlich 112, S. Gotovac 111, L.K. Graczykowski 128, A. Grelli 53, A. Grigoras 34, 
C. Grigoras 34, V. Grigoriev 72, A. Grigoryan 1, S. Grigoryan 62, B. Grinyov 3, N. Grion 106, 
J.F. Grosse-Oetringhaus 34, J.-Y. Grossiord 124, R. Grosso 34, F. Guber 52, R. Guernane 67, B. Guerzoni 26, 
M. Guilbaud 124, K. Gulbrandsen 76, H. Gulkanyan 1, M. Gumbo 85, T. Gunji 121, A. Gupta 86, R. Gupta 86, 
K.H. Khan 15, R. Haake 50, Ø. Haaland 17, C. Hadjidakis 47, M. Haiduc 58, H. Hamagaki 121, G. Hamar 130, 



ALICE Collaboration / Physics Letters B 738 (2014) 361–372 369

L.D. Hanratty 98, A. Hansen 76, J.W. Harris 131, H. Hartmann 39, A. Harton 13, D. Hatzifotiadou 101, 
S. Hayashi 121, S.T. Heckel 49, M. Heide 50, H. Helstrup 35, A. Herghelegiu 74, G. Herrera Corral 11, 
B.A. Hess 33, K.F. Hetland 35, B. Hippolyte 51, J. Hladky 56, P. Hristov 34, M. Huang 17, T.J. Humanic 19, 
D. Hutter 39, D.S. Hwang 20, R. Ilkaev 95, I. Ilkiv 73, M. Inaba 122, G.M. Innocenti 25, C. Ionita 34, 
M. Ippolitov 96, M. Irfan 18, M. Ivanov 93, V. Ivanov 81, A. Jachołkowski 27, P.M. Jacobs 70, C. Jahnke 115, 
H.J. Jang 64, M.A. Janik 128, P.H.S.Y. Jayarathna 117, S. Jena 117, R.T. Jimenez Bustamante 59, P.G. Jones 98, 
H. Jung 40, A. Jusko 98, S. Kalcher 39, P. Kalinak 55, A. Kalweit 34, J. Kamin 49, J.H. Kang 132, V. Kaplin 72, 
S. Kar 126, A. Karasu Uysal 65, O. Karavichev 52, T. Karavicheva 52, E. Karpechev 52, U. Kebschull 48, 
R. Keidel 133, D.L.D. Keijdener 53, M.M. Khan 18,iii, P. Khan 97, S.A. Khan 126, A. Khanzadeev 81, 
Y. Kharlov 108, B. Kileng 35, B. Kim 132, D.W. Kim 64,40, D.J. Kim 118, J.S. Kim 40, M. Kim 40, M. Kim 132, 
S. Kim 20, T. Kim 132, S. Kirsch 39, I. Kisel 39, S. Kiselev 54, A. Kisiel 128, G. Kiss 130, J.L. Klay 6, J. Klein 89, 
C. Klein-Bösing 50, A. Kluge 34, M.L. Knichel 93,89, A.G. Knospe 113, C. Kobdaj 110,34, M. Kofarago 34, 
M.K. Köhler 93, T. Kollegger 39, A. Kolojvari 125, V. Kondratiev 125, N. Kondratyeva 72, A. Konevskikh 52, 
V. Kovalenko 125, M. Kowalski 34,112, S. Kox 67, G. Koyithatta Meethaleveedu 44, J. Kral 118, I. Králik 55, 
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