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The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–
Xe collisions at √sNN = 5.44 TeV is presented. This result, together with previous HERA γ p data and 
γ –Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is 
particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at 
a semi-hard scale. The cross section of the Xe + Xe → ρ0 + Xe + Xe process, measured at midrapidity 
through the decay channel ρ0 → π+π−, is found to be dσ/dy = 131.5 ± 5.6(stat.)+17.5

−16.9(syst.) mb. The 
ratio of the continuum to resonant contributions for the production of pion pairs is also measured. 
In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both 
colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction 
at a centre-of-mass energy per nucleon of the γ A system of Wγ A,n = 65 GeV is found to be consistent 
with a power-law behaviour σ(γ A → ρ0 A) ∝ Aα with a slope α = 0.96 ± 0.02(syst.). This slope signals 
important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.

© 2021 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Large Hadron Collider (LHC) is a source of photon-induced 
processes. The electromagnetic fields of the relativistic nuclei are 
strongly contracted allowing for their interpretation as a flux of 
quasi-real photons, which interact with the nuclei travelling in the 
opposite direction. When the impact parameter of the collision is 
larger than the sum of the radii of the incoming nuclei, purely 
strong interactions are suppressed due to the short range of this 
force and photon-induced processes dominate. Interactions of this 
type are called ultra-peripheral collisions (UPCs) [1–3].

Among all the possible processes in UPC, the coherent pro-
duction of vector mesons stands out due to the large associated 
cross sections and the cleanliness of its experimental signature: 
the quasi-real photon interacts with the coherent QCD field of the 
other incoming particle to produce only a vector meson. Due to 
the coherence condition, the average transverse momentum of the 
vector meson, 〈pT 〉, is related to the transverse size of the nu-
cleus R A as 〈pT 〉 ∼ �/R A [1], yielding 〈pT 〉 ∼ 37 (30) MeV/c for 
a Xe (Pb) nucleus. A related process is the incoherent production 
where the photon interacts with a nucleon in the nucleus, which 
implies a larger average transverse momentum of the produced 
vector meson. In addition, secondary electromagnetic interactions 
of the colliding nuclei may excite one or both of them and upon 
de-excitation produce neutrons at beam rapidities [4]. This effect 
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depends on the square of the electric charge of the nucleus, so it 
is expected to be substantially weaker for Xe than for Pb.

One of the photoproduction processes with the largest cross 
section is the production of a ρ0 vector meson, which offers the 
opportunity to study the approach to the black-disc limit of QCD 
with a semi-hard scale [5]. This process has been extensively stud-
ied at the Relativistic Heavy Ion Collider (RHIC) in Au–Au, and at 
the LHC in Pb–Pb UPC. Measurements at RHIC were performed by 
the STAR Collaboration at centre-of-mass energies per nucleon pair 
(
√

sNN) of 62.4 GeV [6], 130 GeV [7], and 200 GeV [8], while the 
studies at the LHC by the ALICE Collaboration were carried out at 
2.76 TeV [9] and 5.02 TeV [10]. All measurements were performed 
at midrapidity. At the time of the first experimental results, the 
model predictions of the cross section varied substantially, with 
the model predicting the lowest cross section underestimating data 
by one standard deviation and the model predicting the largest 
cross section almost a factor two above data [9]. The availabil-
ity of new and more precise data motivated an improvement of 
the different theoretical approaches, which in general are within 
some 20% to data [10]. The situation, although better than a few 
years ago, still calls for more data to improve our understanding of 
this process. Furthermore, the coherent production of a ρ0 vector 
meson off a nucleus allows for the study of shadowing, the ex-
perimental fact that the nuclear structure functions are suppressed 
compared to the superposition of those of their constituent nucle-
ons [11]. This phenomenon is expected to depend on the atomic 
number A of the nucleus so measurements for different values of 
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A offer another tool to test our understanding of shadowing at 
high energies and semi-hard scales.

In collisions of two heavy ions with atomic number A, either 
nucleus can be a source of photons, which results in two contribu-
tions to the cross section. At midrapidity both contributions are the 
same, but at forward rapidities one corresponds to a high-energy 
photon while the other to a low-energy photon. If one could disen-
tangle both contributions it would be possible to study in the same 
experiment the energy dependence of the process, allowing for the 
study of the energy dependence of the underlying QCD dynamics. 
Two techniques have been put forward to this end [12,13]. The 
first one makes use of UPCs and peripheral collisions. The second, 
described in Ref. [13], proposes to classify the measured events 
depending on the presence of the beam-rapidity neutrons men-
tioned earlier, and use these different cross sections in each class 
to disentangle the low and high energy contributions. Measure-
ments at midrapidity are ideal to test this proposal because both 
contributions are the same, so the measured cross sections can 
be unambiguously compared with models predicting the neutron 
emission probability. ALICE can measure beam-rapidity neutrons 
at both sides of the nominal interaction point. The sides are called 
A and C, with the latter one hosting the ALICE muon spectrome-
ter [14]. ALICE has previously published [10] the cross section for 
the coherent production of ρ0 vector mesons in Pb–Pb UPC for 
events with no beam-rapidity neutrons (0n0n, where the first 0n 
refers to the A-side and the second to the C-side), with one or 
more neutrons on one side only (0nXn+Xn0n), or on both sides 
(XnXn). The comparison of the corresponding cross section frac-
tions with calculations of the emission of beam-rapidity neutrons 
based on the STARlight [15,16] and nO

On [17] models suggests that 
the method works, but it is important to test it further, for ex-
ample with the large data sets expected from the LHC Run 3 and 
4 [18].

In this letter, the first measurement of the coherent photopro-
duction of ρ0 vector mesons in Xe–Xe UPCs at 

√
sNN = 5.44 TeV is 

presented. The cross section of this process is measured at midra-
pidity through the decay channel ρ0 → π+π− . The ratio of the 
continuum to resonant contributions for the production of pion 
pairs is also measured. In addition, the fraction of events in the 
0n0n, 0nXn+Xn0n, and XnXn classes are given. Finally, using data 
from HERA and from Pb–Pb UPC collisions measured by ALICE, the 
A dependence of the cross section is studied at a centre-of-mass 
energy per nucleon of the γ A system of Wγ A,n = 65 GeV.

2. Experimental set-up

During a 6-hour pilot run in October 2017, the LHC collided 
xenon nuclei for the first time. These collisions took place at √

sNN = 5.44 TeV. A complete description of the ALICE detector and 
its performance can be found in Ref. [14,19]; here, just a brief de-
scription of the systems involved in the measurement is given.

The decay products of the ρ0 vector meson are measured in 
the central-barrel region of ALICE with the ITS and TPC detectors. 
The ALICE Inner Tracking System (ITS) [20] is made of six layers 
of silicon sensors. Each layer has a cylindrical geometry concen-
tric around the beam line. Three different technologies are used: 
pixel, drift and strip sensors. Each technology is used in two con-
secutive layers. All six layers are used for tracking in this analysis. 
The Time-Projection Chamber (TPC) [21] surrounds the ITS. It is 
a large cylindrical gas detector with a central membrane at high 
voltage and two readout planes, composed of multiwire propor-
tional chambers, at the end caps. It is the main tracking detector 
and it also offers particle identification through the measurement 
of ionisation energy loss. The TPC and ITS cover a pseudorapidity 
interval |η| < 0.9 and the full azimuth; they are situated inside a 

large solenoid magnet which in Xe–Xe collisions provided a B = 
0.2 T field.

The neutrons at beam rapidity are measured by two neutron 
zero-degree calorimeters, ZNA and ZNC, located at ±112.5 m from 
the nominal interaction point along the beam line and covering 
the pseudorapidity range |η| > 8.8 [19]. The energy resolution for 
single neutrons is around 20% which allows measuring of events 
with either zero or a few neutrons at beam rapidities.

A dedicated UPC trigger was utilised to collect the data. The 
trigger used the Silicon Pixel Detector (SPD), the Time-of-Flight 
detector (TOF) and the V0 detectors. The SPD forms the two in-
nermost layers of the ITS, covering pseudorapidity ranges |η| < 2
and |η| < 1.4, respectively. The SPD has about 107 pixels which 
are read out by 400 (800) chips in the inner (outer) layer. Each 
of the readout chips fires a trigger if at least one of its pixels has 
a signal. TOF surrounds the TPC and matches its pseudorapidity 
coverage. The TOF is a large cylindrical barrel of multigap resistive 
plate chambers with some 1.5 × 105 readout channels arranged in 
1608 pads that are capable of triggering [22]. The V0 [23] is a set 
of two arrays made of 32 scintillator cells each. The arrays cover 
the pseudorapidity ranges −3.7 < η < −1.7 and 2.8 < η < 5.1, re-
spectively. The time resolution of the V0 is better than 500 ps and 
provides a trigger if it registers a signal. The trigger requires at 
least two hits in the inner and in the outer layer of the SPD, at 
least two pads fired in TOF and no signal in the V0.

The determination of the luminosity is based on reference trig-
ger counts in the V0 detector, while the reference trigger cross 
section is the product of the hadronic inelastic cross section, de-
termined based on a Glauber model [24], and a trigger efficiency 
factor. In detail, the actual trigger signal used as a reference for 
the luminosity determination requires a signal in the V0 detec-
tor with a total amplitude above a specific threshold, optimised 
for the rejection of both beam-induced and electromagnetic (EM) 
background. In order to evaluate the reference trigger efficiency 
(ratio of the trigger cross section to the total hadronic cross sec-
tion), the V0 signal amplitude distribution in minimum-bias events 
(collected with the trigger defined in [25]) is fitted with a model 
which combines the Glauber model (for the centrality) and a neg-
ative binomial distribution (for particle production), as described 
in [26], [25], and [27]. The fit is performed in the 0–90% central-
ity (where the minimum-bias trigger is fully efficient for hadronic 
interactions and fully inefficient for EM interactions) and the distri-
bution is then extrapolated to 0–100% to get the total integral. The 
trigger efficiency is finally determined as the number of events fir-
ing the reference trigger divided by the extrapolated integral of the 
minimum-bias spectrum. The trigger efficiency thus determined is 
68.81 ±0.01 (stat.)%. In the Glauber model the following values for 
xenon are used: A = 129, the radius of the nuclear-charge distri-
bution r = (5.36 ± 0.1) fm, a skin depth of (0.59 ± 0.07) fm, and 
a deformation parameter β2 = 0.18 ± 0.02 [25]. The integrated lu-
minosity used in this analysis is (279.5 ± 29.9) mb−1, where the 
quoted uncertainty is systematic and is described later.

3. Analysis procedure

3.1. Event and track selection

Events are selected for the analysis if (i) the trigger described 
above is active, (ii) there are no signals in the V0 detectors as 
determined by an offline selection, and (iii) they have exactly two 
tracks fulfilling the requirements listed below.

Offline, a more refined algorithm to quantify the V0 timing sig-
nal is used, consisting of a larger time window. For this reason, this 
analysis requires the V0 offline reconstruction for selecting events.

The tracks are required to have contributions from both the ITS 
and the TPC. Both layers of the SPD have to have a signal asso-
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Fig. 1. Uncorrected invariant mass (left) and transverse momentum (right) distribution of dipion candidates. Also shown are track pairs that have the same electric charge and 
fulfil all other requirements. The STARlight templates for coherent and incoherent production—shown in the right panel with the green and magenta lines, respectively—are 
normalised to the corresponding luminosity of data. An example of a fit to obtain the incoherent contribution (see text for details) is also shown (black line).

ciated both to the track and to a SPD trigger signal, the tracks 
should also have at least 50 (out of 159) space points recon-
structed by the TPC. Both tracks are required to be fully within 
the acceptance of the detector (|ηtrk| < 0.8). They have to originate 
from a primary vertex whose coordinate along the beam line ful-
fils |ztrk| < 10 cm, and their associated electric charge should be of 
opposite sign. Particle identification of a track is determined by the 
number of standard deviations (nσ ) by which the energy loss mea-
surement deviates from the pion hypothesis. The quadratic sum 
of nσ1,2 for the π+ and π− candidates has to be less than five 
squared (n2

σ1
+ n2

σ2
< 52). Finally, the transverse momentum of the 

pion pair has to be less than 0.15 GeV/c. After these selections, 
1827 events remain in the data sample.

Fig. 1 shows the distributions of the invariant mass of the pion 
pairs as well as their transverse momentum. In addition, the fig-
ure also shows the corresponding distribution of an alternate data 
sample obtained by applying all the criteria described above except 
that the electric charge associated to both tracks has to be of the 
same sign. The mass distribution shows a clear signal of a ρ0 vec-
tor meson over a very small background represented by the same-
sign distribution. The transverse momentum distribution shows a 
pronounced peak at values of a few tens of MeV/c as expected 
by coherent production accompanied by a tail towards larger mo-
menta produced by incoherent production and a small remaining 
background, e.g. from peripheral hadronic collisions of the two in-
coming nuclei. Transverse momentum distributions of MC events, 
after applying on them the same selection criteria as real data 
(Sec. 3.2), are also shown in the figure to support the interpre-
tation of the distribution being dominated by coherent production 
at low and incoherent interactions at larger transverse momenta. 
An example of a fit, described in more detail in Sec. 3.3, to obtain 
the incoherent contribution is also shown.

The presence of one or more neutrons at beam rapidity is de-
termined by using the timing capabilities of the ZNA and ZNC, 
which allow for the selection of events with a signal within ±2 ns 
from the time expected for neutrons produced in the interaction.

3.2. Signal extraction

A Monte Carlo (MC) sample of pion pairs from continuum 
and ρ0 resonant production, generated with the STARlight pro-
gram [16], is used to extract mass-dependent efficiency correction 
factors to account for the acceptance and the efficiency of the 
detector and the selection criteria. All events in this sample are 
passed by a detailed simulation of the ALICE apparatus and sub-
jected to the same analysis procedure as in data. The correction 
factor at each mass of the pion pair is used to correct the mass 

distribution shown in Fig. 1. The correction factor increases from 
about 0.025 at 550 MeV/c2 to 0.055 at 1.1 GeV/c2. The number of 
ρ0 vector mesons is extracted from the corrected invariant mass 
distribution normalised by the luminosity of the sample and after 
applying other corrections, described below, to take into account 
pile-up and the contribution from incoherent events.

The corrected mass distribution is fitted to a model describing 
the resonant and continuum production of pion pairs according to 
the Söding prescription [28] and a term M that takes into account 
the contribution of the γ γ → μ+μ− process:

d2σ

dm dy
= |A × BWρ + B|2 + M. (1)

Here A is the normalisation factor of the ρ0 Breit–Wigner (BWρ ) 
function, and B is the non-resonant amplitude. The relativistic 
Breit–Wigner function of the ρ0 vector meson is

BWρ =
√

m × mρ0 × 
(m)

m2 − m2
ρ0 + imρ0 × 
(m)

, (2)

where mρ0 is the pole mass of the ρ0 vector meson. The mass-
dependent width 
(m) is given by


(m) = 
(mρ0) × mρ0

m
×

(
m2 − 4m2

π

m2
ρ0 − m2

π

)3/2

, (3)

with 
(mρ0) the width of the ρ0 vector meson and mπ the mass 
of the pion [29]. The shape of γ γ → μ+μ− process M is taken 
from STARlight and passed through the same selection procedure 
as data. The fitted parameters are A, B and M , while the mass and 
width of the ρ0 were fixed to the PDG values [30].

An example fit of data with this model is shown in Fig. 2, 
where a clear resonance structure is seen in data and decomposed 
by the fit into a small background contribution (M), the contribu-
tion of the continuum production of pion pairs (B), the ρ0 signal 
(BWρ ) and the interference term from squaring the amplitude (see 
Eq. (1)).

3.3. Remaining corrections and systematic uncertainties

The contributions to the systematic uncertainty are listed in Ta-
ble 1 and discussed one by one in the following paragraphs. The 
total uncertainty is obtained as the quadratic sum of the various 
contributions.
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Fig. 2. Invariant mass distribution of pion pairs with the different components of 
the fit represented by lines. The number of ρ0 candidates is integrated over the 
resonant Breit–Wigner part (green, full line), the interference term between A and 
B of Eq. (1) is shown by the dash-dotted blue line and the muon template M (red, 
dashed line) is taken from STARlight. See text for more details.

Table 1
Summary of the systematic uncertainties for the measured cross 
section. See text for details.

Source Uncertainty

Variations to the fit procedure ±2.5%
Ross–Stodolsky fit model +3.5%
Acceptance and efficiency ±0.5%
Track selection ±3.0%
Track ITS–TPC matching ±4.0%
SPD trigger-to-track matching ±2.0%
TOF trigger efficiencies ±2.8%
Vertex selection ±1.5%
Incoherent contribution ±2.0%
Pile-up ±1.0%
Muon background (γ γ → μ+μ−) +(0.5)

−(0.2)
%

Electromagnetic dissociation ±0.2%
Luminosity ±10.7%

Total +(13.3)
−(12.8)

%

The signal extraction procedure is repeated many times with 
slightly different settings where the lower and upper limit of the 
fit range as well as the bin width are varied. The variations are 
within 0.55 to 0.65 GeV/c2, 0.9 to 1.4 GeV/c2, and 10 to 50 
MeV/c2, respectively. The average value of the pole mass for the 
ρ0 vector meson as well as its width are found to agree with the 
value reported by the Particle Data Group [30]. As the precision of 
our data sample is limited, the values for the pole mass and width 
of the ρ0 vector meson are then fixed to the values measured in 
the ρ0 photoproduction process [30] and the signal extraction pro-
cedure is repeated. The standard deviation of the distribution of 
extracted number of ρ0 vector mesons from all the different fits 
is considered as a systematic uncertainty, while the mean is taken 
as the signal. The mean of all statistical uncertainties is taken as 
the statistical uncertainty. Fits are performed using a log-likelihood 
as well as a χ2 approach; both producing the same results. The 
systematic uncertainty of the cross section from those variations 
amounts to 2.5%.

The Ross–Stodolsky prescription [31] is used as an alternative 
model to fit the resonance and continuum contribution, which re-
sults in a yield systematically higher by 3.5%. Pure MC studies, 
where signal is generated with a Söding function and fitted with a 
Ross–Stodolsky model, and vice versa, show a similar behaviour. As 
the underlying distribution is not known, this difference is taken as 
a systematic uncertainty.

Two MC samples are used to account for the acceptance and 
efficiency correction. One simulates only the Breit–Wigner distri-
bution for a pure ρ0 signal and the other includes the effect of 
the pion-pair continuum. The full variation of 0.5% on the cross 
section obtained by using these two samples is considered a sys-
tematic uncertainty.

All the analysis steps are repeated by varying the tracking se-
lection criteria within reasonable values. In particular, a test is 
performed where events with tracks in some parts of the detector, 
known to have reduced performance, are rejected. The full varia-
tion of the results amounts to 3% and it is taken as a systematic 
uncertainty. Likewise, the uncertainty when matching track seg-
ments in the ITS to their counterparts in the TPC is studied by 
varying the track selection and investigating the dependence of the 
matching on the track kinematics and the general event character-
istics, in each case comparing the results to those from a detailed 
simulation of the detector. This uncertainty amounts to 4%.

The two pion tracks are matched to signals in the SPD. In real 
data it could be that the SPD has other signals, e.g. from noise or 
soft electron-positron production. The performance of the match-
ing algorithm is checked by comparing the results of applying it 
in data and in MC, where these extra effects are not present. A 
discrepancy of 2.0% is found and assigned as a systematic uncer-
tainty. The uncertainty on the trigger efficiency of TOF is obtained 
by comparing the acceptance-times-efficiency correction obtained 
from MC under different assumptions and assigning the full 2.8% 
difference.

There is a small discrepancy between data and the MC descrip-
tion of the coordinate of the interaction vertex along the beam 
line for collisions happening ±10 cm and more beyond the nomi-
nal interaction point. The full difference in the cross section when 
retaining (or not) events beyond ±10 cm is found to be ±1.5% and 
assigned as a systematic uncertainty.

The contribution from incoherent production of ρ0 vector 
mesons for the region pT < 0.15 GeV/c is determined by fitting the 
corresponding template from STARlight, accounting for the same-
sign contribution taken from data (see Fig. 1), to the transverse 
momentum distribution in a range from 0.15 to 1.0 GeV/c and 
extrapolating to the region covered by the measurement. The fit 
is repeated many times varying the fit ranges, within the stated 
interval, and the bin widths. An example of such a fit is shown 
in Fig. 1. The contribution from the incoherent production to the 
yield is given by the mean over the results from these fits; it 
amounts to 10.2% and it is subtracted from the cross section. The 
standard deviation of all fits is taken as a systematic uncertainty 
(±2.0%). It is worth noting that the contribution from incoher-
ent production varies across different neutron classes. As the data 
sample of events with neutrons at beam rapidities is small, the in-
coherent contribution is estimated for the full 0nXn+Xn0n+XnXn 
sample. The incoherent background amounts to (6.1 ± 3.0(syst.))% 
for the 0n0n and (35.8 ± 4.3(syst.))% for the 0nXn+Xn0n+XnXn 
event classes, respectively. This is taken into account when com-
puting the fractions of the cross section in each class reported 
below.

The V0 veto could be invalidated if this detector shows a sig-
nal which originates from a separate interaction, an effect called 
pile-up. Electromagnetic e+e− pair production is the main source 
of these signals. The probability for pile-up is obtained from an 
unbiased sample triggered by the timing of expected bunch cross-
ings at the interaction point surrounded by the ALICE detector. This 
probability is used, assuming a Poisson process, to correct for the 
events lost due to pile-up. The correction factor is 0.89 ± 0.01; the 
statistical uncertainty from this procedure is taken as systematic 
uncertainty (±1.0%).

The statistical uncertainty of the γ γ → e+e− cross section in 
our previous measurement [32] is around 10% and within this pre-
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Fig. 3. Cross section for the coherent photoproduction of ρ0 vector mesons in Xe–Xe 
UPC. The lines show the predictions of the different models described in the text.

cision it agrees with the prediction from STARlight. Changing the 
normalisation of the γ γ → μ+μ− template in the fit by ±10%, 
produces a −0.2% and +0.5% systematic uncertainty on the ex-
tracted ρ0 cross section.

Electromagnetic dissociation producing the beam-rapidity neu-
trons is accompanied on occasion by other charged particles [33]. 
These charged particles, if they hit the V0, may cause the event 
to be lost. The probability for this to happen is estimated to be 
(1.7 ± 0.2)% using the unbiased sample just mentioned. The statis-
tical precision of this procedure is taken as systematic uncertainty 
(±0.2%).

The uncertainty on the luminosity is determined by comput-
ing the prediction of the Glauber model varying each parameter 
within their reported uncertainty. This is the dominant source of 
uncertainty in the measurement and amounts to 10.7%.

The extraction of fractions of the cross section in the 0n0n, 
0nXn+Xn0n, and XnXn classes is also affected by pile-up in the 
ZNA and ZNC and by the efficiency of these calorimeters to de-
tected neutrons. The pile-up probabilities are (0.47 ± 0.02)% and 
(0.44 ± 0.02)%, while the efficiencies are 0.91 ± 0.01 and 0.92 ±
0.02 for the ZNA and ZNC, respectively. The uncertainties in these 
numbers, along with the uncertainty on the subtraction of the 
incoherent contribution, are taken into account to obtain the un-
certainty on the fractions quoted below.

4. Cross section results

The cross section for the coherent photoproduction of ρ0 vector 
mesons in ultra-peripheral Xe–Xe collisions at 

√
sNN = 5.44 TeV 

measured at midrapidity is

dσ

dy
= 131.5 ± 5.6 (stat.)+17.5

−16.9 (syst.) mb. (4)

Fig. 3 shows the measured cross section and compares it with 
the prediction of the following models. STARlight [16], which is 
based on (i) a phenomenological description of existing data on 
exclusive production of ρ0 vector mesons off protons, (ii) the op-
tical theorem, and (iii) a Glauber-like eikonal formalism which ne-
glects the elastic part of the elementary ρ0–nucleon cross section. 
The prediction by Guzey, Kryshen and Zhalov (GKZ) [34] relies on a 
modified vector dominance model, where hadronic fluctuations of 
the photon are taken into account according to the Gribov–Glauber 
model of nuclear shadowing; the band shows the variation on the 
predictions when varying the parameters of the model. The model 
by Gonçalves et al. (GMMNS) [35] uses the colour dipole approach 
with amplitudes obtained from the IIM model [36] coupled to a 

Table 2
Fraction of the cross section in each one of the classes defined by the presence or 
absence of beam-rapidity neutrons compared with the predictions from the nO

On
model [17]. The first uncertainty is statistical, the second comes from the variations 
in the ZNA and ZNC pile-up factors and efficiencies, while the third comes from 
the variation in the number of events which is dominated by the subtraction of 
incoherent contribution. The use of ± or ∓ reflects the correlation between the 
classes. See text for details.

Class Measured fraction nO
On prediction

0n0n (90.46 ± 0.70 ± 0.17 ∓ 0.68)% 92.4%
0nXn+Xn0n (8.48 ± 0.66 ∓ 0.13 ± 0.64)% 6.9%
XnXn (1.07 ± 0.25 ∓ 0.04 ± 0.07)% 0.7%

Glauber prescription to go from the nucleon to the nuclear case. 
The two lines shown for GMMNS bracket the changes in their pre-
dictions when varying different ingredients of their model [35]. 
Finally, the model from Cepila et al. (CCKT) [37,38] also uses the 
colour dipole approach, but in this case the structure of the nu-
cleon in the transverse plane is described by so-called hot spots, 
regions of high gluonic density, whose number increases with in-
creasing energy [37]; nuclear effects are implemented along the 
ideas of the Glauber model proposed in Ref. [39]. At midrapidity, 
all models are relatively close to one another and overestimate the 
data. The lower band of GMMNS as well as the STARlight and CCKT 
predictions are slightly more than one standard deviation above 
the data. Only the upper band of GMMNS is disfavoured by more 
than three standard deviations.

The ratio of non-resonant to resonant pion production, see 
Eq. (1), is measured to be |B/A| = 0.58 ± 0.04 (stat.) ± 0.03 (syst.)

(GeV/c2)− 1
2 . The main uncertainty comes from the correction for 

acceptance and efficiency, closely followed by variations from the 
signal extraction procedure. This value is consistent with those 
obtained in Pb–Pb UPC at 

√
sNN = 2.76 TeV [9] and 

√
sNN =

5.02 TeV [10], namely |B/A| = 0.50 ± 0.04 (stat.) ±0.10
0.04 (syst.)

(GeV/c2)− 1
2 and |B/A| = 0.57 ± 0.01 (stat.) ± 0.02 (syst.)

(GeV/c2)− 1
2 , respectively. The corresponding ratio in coherent 

Au–Au UPC measured by STAR at 
√

sNN = 200 GeV is 0.79 ±
0.01 (stat.) ± 0.08 (syst.) (GeV/c2)− 1

2 [8]. The CMS Collabora-

tion measured 0.50 ± 0.06 (stat.) (GeV/c2)− 1
2 in p–Pb UPC at √

sNN = 5.02 TeV [40] for |t| < 0.5 GeV2. The ZEUS Collabora-
tion, using a sample of positron–proton collisions at a centre-of-
mass energy of 300 GeV, reports 0.67 ± 0.02 (stat.) ± 0.04 (syst.)
(GeV/c2)− 1

2 for their full analysed sample, and ≈ 0.8 (GeV/c2)− 1
2

for t values similar to those of coherent ρ0 production in Pb–Pb 
UPC [41].

The fraction of the cross section in each one of the classes 
defined by the presence or absence of beam-rapidity neutrons is 
shown in Table 2, where the measurement is also compared with 
the prediction from the nO

On MC [17]. This program generates neu-
trons emitted due to the electromagnetic dissociation (EMD) of 
two interacting nuclei. It is based on photon fluxes computed in 
the semi-classical approximation, and on all existing data on EMD 
complemented by phenomenological extrapolations where data is 
not available. It can easily be interfaced to theoretical predictions 
of coherent vector meson production. The agreement of the model 
with data is at the level of one standard deviation; this, as well 
as the satisfactory description of the corresponding cross sections 
observed in Pb–Pb UPC at 

√
sNN = 5.02 TeV [10], suggests that 

the emission of neutrons at beam-rapidity is well understood for 
the coherent photoproduction of ρ0 vector mesons off nuclei with 
such different atomic mass number as Pb and Xe.

The measurements of the UPC cross section for coherent pro-
duction of ρ0 vector mesons at midrapidity for Pb–Pb [10] and 
for Xe–Xe have been converted into a γ A measurement by di-
viding the cross sections by two times the corresponding photon 

5
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Fig. 4. A dependence of the γ A cross section for the coherent production of a ρ0

meson and the corresponding power-law fit shown as a band. The data are from 
this analysis and from [10,42]. The general expectations for three extreme cases 
are represented by the dashed, dotted-dashed, and dotted lines, respectively. The 
red band corresponds to the GKZ predictions when varying the parameters of the 
model. A power-law fit to the CCKT model is shown by the blue band. See text for 
details.

fluxes of 58.6 (Xe) and 128.1 (Pb). These numbers are obtained 
following the prescription detailed in Sec. II of Ref. [12]. A flux un-
certainty of 2% is considered, which is uncorrelated between both 
nuclei, because it mainly originates in the knowledge of the nu-
clear geometries; specifically, it is obtained by a variation of the 
nuclear charge radius and skin thickness within their uncertainties 
as parameters of the Wood-Saxon distribution. The uncertainties 
coming from the Ross–Stodolsky fit model and from the ITS-TPC 
matching are correlated between the Xe and Pb results. The midra-
pidity photon–nucleus centre-of-mass energy per nucleon is given 
by W 2

γ A,n = m
√

sNN (with m the mass of the vector meson), so it 
is slightly different in both systems (62 GeV in Pb–Pb and 65 GeV 
in Xe–Xe); as the γ –Pb cross section is expected to change around 
1% between these two values, well within the experimental uncer-
tainties, both measurements are taken as having Wγ A,n = 65 GeV.

The dependence of these cross sections on A is fitted by a 
power-law model, σγ A(A) = σ0 Aα , using also the cross section 
measured by H1 at this energy [42]: (11.8 ± 0.9(syst.)) μb. The 
value reported by H1 is consistent with the corresponding cross 
section found by the ZEUS [41] and CMS [40] collaborations. The 
fit is shown in Fig. 4. It has a χ2 = 1.48 (for one degree of free-
dom). The parameters from the fit when using only uncorrelated 
uncertainties are σ0 = 0.0117 ± 0.0009 mb and α = 0.963 ± 0.019. 
The correlation between them is −0.78. Varying the flux by ±2% 
produces a change in the exponent α of 0.005. Varying the cross 
sections by the correlated uncertainties from the fit model and the 
ITS–TPC matching does not modify the σ0 parameter and causes a 
change in the exponent α of +0.006 and ±0.007, respectively.

The fit is compared with three generic expectations having dif-
ferent dependence on A resulting on slopes α of 4/3, 1, and 2/3 for 
full coherence disregarding any other dynamical effect, for a total 
incoherent behaviour, and for the black-disc limit, respectively. The 
slope found in data is significantly different from 4/3 signalling 
important shadowing effects. The closeness of data to a slope of 
1 does not imply incoherent behaviour; it is just a coincidence 
produced by the large shadowing suppression. The black-disc limit 
seems to be quite distant at this energy of Wγ A = 65 GeV.

Fitting to the same functional form the predictions of the 
Gribov–Glauber approach (GKZ [34,43]) and of the colour dipole 
model with subnucleon degrees of freedom (CCKT [38,44]) yields 
slopes of 0.985 ± 0.007 and 0.984 ± 0.003, respectively, where in 
both cases the parameter σ0 has been fixed to the correspond-
ing prediction for the γ p cross section. Both slopes are in good 
agreement with that found in data. This was to be expected given 

that both approaches give a reasonable description of the different 
available data.

5. Summary

The cross section for the coherent photoproduction of ρ0 vec-
tor mesons in Xe–Xe UPC at 

√
sNN = 5.44 TeV has been measured 

and compared with existing models of this process. The theoret-
ical predictions slightly overestimate the measurement. The ratio 
of the continuum-to-resonant contributions for the production of 
pion pairs is also measured and found to agree with previous mea-
surements in Pb–Pb UPC. The fraction of events accompanied by 
electromagnetic dissociation of either one or both colliding nuclei 
is reported and compared with the predictions of the nO

On model. 
The fair agreement between data and predictions suggest that this 
process is well understood within the current experimental uncer-
tainties and can be used as a tool to disentangle the different γ A
contributions to the UPC cross sections.

The dependence on A of the cross section for the coherent ρ0

photoproduction at a centre-of-mass energy per nucleon of the γ A
system of 65 GeV is found to be consistent with a power-law be-
haviour with a slope of 0.96 ± 0.02. This exponent is substantially 
smaller than what is expected from a purely coherent process, 
taking into account the geometry, but disregarding any dynamic 
effect. A fair description of Pb–Pb and Xe–Xe data is obtained 
in models based on hadronic degrees of freedom in the Gribov–
Glauber approach (GKZ) as well as in partonic-level models (CCKT). 
In this context, the A dependence of the cross section is a strong 
indicator that QCD effects are important and relatively well mod-
elled.
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