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Abstract. The main goal of this paper is twofold. The first one is to investigate the nonexistence of positive
solutions for the following nonlinear parabolic partial differential equation on a noncompact Riemannian
manifold M ,

⎧
⎪⎨

⎪⎩

∂u
∂t = Δp,gu + V (x)u p−1 + λuq in Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

u(x, t) = 0 on ∂Ω × (0, T ),

where 1 < p < 2, V ∈ L1loc(Ω), q > 0, λ ∈ R, Ω is bounded and has a smooth boundary in M and Δp,g
is the p-Laplacian on M . The second one is to obtain Hardy- and Leray-type inequalities with remainder
terms on a Riemannian manifold M that provide us concrete potentials to use in the partial differential
equation we are interested in. In particular, we obtain explicit (mostly sharp) constants for these inequalities
on the hyperbolic space Hn .

1. Introduction

Let M be an n-dimensional complete noncompact Riemannian manifold, n ≥ 2,
endowed with a Riemannian metric tensor g = (gi j ), and Ω be a bounded domain
with smooth boundary in M . One of the main goals of this paper is to investigate
nonexistence of positive solutions of the following non-Newtonian filtration equation
with reaction sources and potential,

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = Δp,gu + V (x)u p−1 + λuq in Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

u(x, t) = 0 on ∂Ω × (0, T ),

(1.1)

where 1 < p < 2, q > 0, λ ∈ R, V ∈ L1
loc(Ω) and Δp,gu = −divg(|∇gu|p−2∇gu)

is the p-Laplacian with 1 < p < ∞.
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The class (1.1) of nonlinear partial differential equations includes several important
cases. Before proceeding to our own results, let us briefly review some important
developments that motivated our study. We begin by recalling the results from the
linear case.

Linear problems. Let M = R
n with the Euclidean metric tensor gi j = δi j . If p = 2

and λ = 0, then our model problem (1.1) reduces to linear heat problem with potential
⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = Δu + V (x)u in Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

u(x, t) = 0 on ∂Ω × (0, T ),

(1.2)

If the potential V belongs to the Kato class or L p with p > n/2 then the Hamiltonian
H = −Δ − V on L2(M) has several good properties and so the linear heat problem
(1.2) is well understood. If the potential V does not belong to these classes, such
as V = c/|x |2, then the solutions of heat problem may have critical behavior. An
interesting result in this direction was obtained by Baras and Goldstein [5]. They
showed that the following heat problem,

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = Δu + c

|x |2 u in Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

u(x, t) = 0 on ∂Ω × (0, T ),

(1.3)

has no nonnegative solutions except u ≡ 0 if c > CH = ( n−2
2 )2, and positive weak

solutions do exist if c ≤ CH. Thus, CH = ( n−2
2 )2 is the cut-off point for existence

of positive solutions for the heat equation with inverse square potential c/|x |2. The
critical constant CH is the best constant in Hardy’s inequality,

∫

Rn
|∇φ(x)|2dx ≥

(n − 2

2

)2
∫

Rn

|φ(x)|2
|x |2 dx,

valid for all φ ∈ C∞
c (Rn) if n ≥ 3 and all φ ∈ C∞

c (Rn\{0}) if n = 1, 2.
In an interesting paper, Cabré and Martel [8] extended some of the results of Baras

andGoldstein [5] to general positive singular potentials. Theydiscovered that existence
and nonexistence of positive solutions of the problem (1.2) is largely determined by
the size of the infimum of the spectrum of the symmetric operator H = −Δ − V ,
which is

σinf(V ;Ω) := inf
0 �≡φ∈C∞

c (Ω)

∫

Ω
|∇φ|2dx − ∫

Ω
V |φ|2dx

∫

Ω
|φ|2dx . (1.4)

The observation of Cabré and Martel [8] was used in [16,17,19,22] to get additional
results on nonexistence of positive solutions for wide classes of linear parabolic prob-
lems.

Nonlinear problems. Let M = R
n with the Euclidean metric tensor gi j = δi j . In his

pioneering paper [14], Fujita studied the following Cauchy problem for the semilinear
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heat equation
{
ut = Δu + u p, (x, t) ∈ R

n × (0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ R
n,

(1.5)

where p > 1 and u0(x) is a bounded positive continuous function. He proved that

(i) if 1 < p < pF then (1.5) has no global positive solutions;
(ii) if p > pF and u0 ≤ δe−|x |2 (0 < δ 	 1), then (1.5) has global positive

solutions,

where pF = 1 + 2
n . We call this critical number pF = 1 + 2

n the Fujita exponent.
The statement (i) also holds for the critical case p = pF , which was proved later
by Hayakawa [20] and Weissler [37]. The result of Fujita [14] has been extended
and generalized to various directions. For instance, the case of a domain, bounded
or unbounded, replacing R

n in (1.5), has been considered. Furthermore, different
equations have been studied, involving more general reaction terms instead of u p or
non-parabolic operators instead of the heat operator ∂t −Δ. We refer the reader to the
survey papers by Deng and Levine [12] and Levine [28] for a good account of related
works.
At the same time, extensions have been carried out also in the context of Riemannian

manifolds. In a series of articles [38–41], not only did Zhang generalize the result of
Fujita to the case of Riemannian manifolds, but he also extended it for wide class
of nonlinear parabolic problems on Riemannian manifolds. For instance, Zhang [38]
considered the following semilinear heat equation with a potential term on an n (n ≥
3)-dimensional complete noncompact Riemannian manifold M ,

{
ut = Δgu − V (x)u + uq in M × (0,∞),

u(x, 0) = u0(x) ≥ 0 in M,
(1.6)

where q > 1. He studied the relation between the Fujita exponent and the potentials V
behaving like a

(1+d(x)b)
, by using global bounds for the fundamental solutions of the

heat equations with a potential. Here, a ∈ R, b > 0, and d(x) is the distance between
a point x ∈ M and a reference point O ∈ M . Indeed, Zhang’s result is a concrete
example of how the potential V has a strong influence on the Fujita exponent.
When M = R

n with the Euclidean metric tensor gi j = δi j and λ = 0, then problem
(1.1) becomes ⎧

⎪⎪⎨

⎪⎪⎩

∂u
∂t = Δpu + V (x)u p−1 in Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω,

u(x, t) = 0 on ∂Ω × (0, T ).

(1.7)

Using the method of Cabré and Martel [8], Goldstein and Kombe [18] showed that
nonexistence of positive solutions of the problem (1.7) is determined by the value of
p and the size of the following normalized p-energy form

σ
p
inf := inf

0 �≡φ∈C∞
c (Ω\K)

∫

Ω
|∇φ|pdx − ∫

Ω
V |φ|pdx

∫

Ω
|φ|pdx , (1.8)
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where K is a closed Lebesgue null subset of Ω .
In light of these developments, it is natural to ask how the addition of the source term

λuq to the problem (1.7) will affect the results previously obtained in [18]. The first
purpose of this article is to address the question above in an n-dimensional complete
noncompact Riemannian manifold M .
Note that there is a competition between the integral terms

∫

Ω
|∇φ|pdvg and

∫

Ω
V |φ|pdvg in the the bottom of the spectrum (1.8), and one could expect that the

the bottom of the spectrum (1.8) can be −∞. In fact, this depends on the choice of
the potential V . Our interest here is to consider only the critical potentials, which are
related to sharp Hardy and Leray type inequalities. Our second main goal in this paper
is to present various Hardy- and Leray-type inequalities with remainder terms on a
RiemannianmanifoldM . In particular, we obtain sharp constants for these inequalities
on the hyperbolic space Hn .
The plan of this paper is as follows. In Sect. 2, some preliminaries are introduced and

one of themain results of this paper is proved. Section 3 is devoted to the study ofHardy
and Leray type inequalities with remainders. Furthermore, we consider the hyperbolic
spaceHn as a model manifold and recall some facts about the hyperbolic space. Then,
we present various Hardy- and Leray-type inequalities with explicit constants (mostly
sharp) and then the application of Theorem 2.1.

2. Preliminaries and nonexistence of positive solutions

In this section, we will recall some basic definitions, notations and results used in
this paper. We refer to [10,15] for more precise information about this subject.
LetM ≡ (M, g)be ann-dimensional completeRiemannianmanifold endowedwith

a metric tensor g = (gi j ). In local coordinates x = (x1, x2, . . . , xn), the Riemannian
metric is written in the form

ds2 =
n∑

i, j=1

gi j dxi dx j ,

where (gi j )ni, j=1 is a symmetric positive definite matrix of smooth functions.
The volume element of M is given in the same local coordinates by

dvg =
√

det(gi j )dx1dx2 . . . dxn,

and the volume of a bounded open set S ⊂ M is

Volg(S) =
∫

S
dvg.

Let u : M → R be a given smooth function. The Riemannian gradient of u is the
vector field ∇gu defined by

〈∇gu, X〉 = du(X) = Xu
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for all smooth vector fields X on M . Here, 〈·, ·〉 is the scalar product induced by g. In
local coordinates, we have

∇gu =
(
(∇gu)1, . . . , (∇gu)n

)
with (∇gu)i :=

n∑

j=1

gi j
∂u

∂x j

and

|∇gu|2 = 〈∇gu,∇gu〉 =
n∑

i, j=1

gi j
∂u

∂xi

∂u

∂x j
,

where (gi j ) is the inverse matrix of (gi j ).
The divergence divg X of a vector field X is defined as the unique smooth function

on M such that
∫

M
f divg Xdvg = −

∫

M
〈∇ f, X〉dvg,

for all f ∞
c (M). In local coordinates, if X = ∑n

i=1 Xi
∂

∂xi
then

divg X = 1
√
det (gi j )

n∑

i=1

∂

∂xi

(√

det (gi j )Xi

)
.

The Laplace–Beltrami operator in M of a function u ∈ C2(M) is given by

Δgu = divg(∇gu)

and whose expression in local coordinates is

Δgu = 1
√
det(gi j )

n∑

i=1

∂

∂xi

(√

det(gi j )
n∑

j=1

gi j
∂u

∂x j

)
.

Due to the divergence theorem, we have
∫

M
φΔgudvg = −

∫

M
〈∇gφ,∇gu〉dvg,

for any smooth u, φ : M → R , with either u or φ compactly supported.
The p-Laplace operator Δp,g acts on C3 functions u on M and is given by

Δp,gu = divg(|∇gu|p−2∇gu),

where 1 < p < ∞. Note that if p = 2, the p-Laplace operator is nothing but the
Laplace–Beltrami operator.

Sobolev inequality. ARiemannianManifold (M, g) of dimension dimM = n > p ≥
1 is said to support a Euclidean-type L p Sobolev inequality if there exists a constant
CM > 0 such that, for every φ ∈ C∞

c (M),

( ∫

M
|φ|p∗

dvg

) 1
p∗ ≤ CM

( ∫

M
|∇gφ|pdvg

) 1
p

(2.1)
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where

p∗ = np

n − p
.

It is well-known that the Sobolev inequality (2.1) holds in R
n and plays a key role

in analysis in Euclidean spaces and in the study of solutions of partial differential
equations. However, for a general manifold, it may not be true. We refer to Saloff-
Coste [34] and Hebey [21] for discussions of the validity of Sobolev inequalities on a
manifold.
As a result of Hölder- and Sobolev-type inequalities, we give the following lemma

which is a key one in order to establish our first main result.

Lemma 2.1. Let M be a complete noncompact Riemannmanifold of dimension n ≥ 2,
1 < p < n and Ω be a bounded domain with smooth boundary in M. Assume that

a(x) ∈ L
n
p (Ω) and φ ∈ C∞

c (Ω). Then, for each ε > 0 there exist a positive constant
C(ε) such that

∣
∣
∣
∣

∫

Ω

a(x)|φ|pdvg

∣
∣
∣
∣ ≤ ε

2(1 − ε)

∫

Ω

|∇gφ|pdvg + C(ε)

∫

Ω

|φ|pdvg. (2.2)

Proof. Let (ak)k≥1 be the sequence defined by ak(x) = min {a(x), k} for almost every
x ∈ Ω and k ≥ 1. Then it can be shown that

||ak(x) − a(x)||Ln/p(Ω) −→ 0 as k −→ ∞. (2.3)

Clearly we have,
∣
∣
∣
∣

∫

Ω

a(x)|φ|pdvg

∣
∣
∣
∣ ≤

∫

Ω

|a − ak ||φ|pdvg + k
∫

Ω

|φ|pdvg. (2.4)

By Hölder’s inequality with conjugate exponents n
n−p and n

p , we get

∣
∣
∣
∣

∫

Ω

a|φ|pdvg

∣
∣
∣
∣ ≤

( ∫

Ω

|a−ak |
n
p dvg

) p
n
( ∫

Ω

|φ| np
n−p dvg

) n−p
n +k

∫

Ω

|φ|pdvg. (2.5)

We remark that Sobolev inequality (2.1) always holds since Ω is a bounded domain
(see [34]). Hence,

∣
∣
∣
∣

∫

Ω

a|φ|pdvg

∣
∣
∣
∣ ≤

( ∫

Ω

|a − ak |
n
p dvg

) p
n

(

Cp
M

∫

Ω

|∇gφ|pdvg

)

+ k
∫

Ω

|φ|pdvg.

(2.6)
Due to the limit (2.3), for every given ε ∈ (0, 1), there is an k(ε) ≥ 1 such that

( ∫

Ω

|a − ak |
n
p dvg

) p
n ≤ ε

2(1 − ε)Cp
M

. (2.7)

Let k = C(ε); we have the desired inequality (2.2). �
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Before we present our main results, we define the generalized positive local solution
in the following sense.

Definition. By a positive local solution of (1.1) continuous off of K, we mean

(i) K is a closed Lebesgue null subset of Ω ,
(ii) u : [0, T ) −→ L1(Ω) is continuous for some T > 0,
(iii) (x, t) �→ u(x, t) ∈ C((Ω\K) × (0, T )),
(iv) u(x, t) > 0 on (Ω\K) × (0, T ),
(v) limt→0 u(., t) = u0 in the sense of distributions,
(vi) ∇gu ∈ L p

loc(Ω) and u is a solution in the sense of distributions of the PDE, in
Ω × (0, T ).

Remark 2.1. If 0 < a < b < T and Ko is a compact subset of Ω\K, then u(x, t) ≥
ε1 > 0 for (x, t) ∈ Ko × [a, b] for some ε1 > 0. We can weaken (iii), (iv) to be

(iii)’ u(x, t) is positive and locally bounded on (Ω\K) × (0, T ),
(iv)’ 1

u(x,t) is locally bounded on (Ω\K) × (0, T ).

If a solution satisfies (i), (ii), (iii)’, (iv)’, (v), and (vi), then we call it a generalized
positive local solution off of K. This is more general than a positive local solution
continuous off of K. If K = ∅, we simply call u generalized positive local solution.

Now, we are able to give our first main result of this section.

Theorem 2.1. Let M andΩ be as above, n ≥ 2, 2n
n+1 ≤ p < 2, p−1 < q < p+ p−n

n ,

V (x) ∈ L1
loc(Ω\K) where K is a Lebesgue null subset of Ω . If

σ
p
inf := inf

0 �≡φ∈C∞
c (Ω\K)

∫

Ω
|∇gφ|pdvg − ∫

Ω
(1 − ε)V |φ|pdvg

∫

Ω
|φ|pdvg

= −∞ (2.8)

for some ε > 0, then the problem (1.1) has no generalized positive local solution off
of K.

Proof. We argue by contradiction. Given any T > 0, let u : [0, T ) −→ L1(Ω) be
a generalized positive local solution to (1.1) in (Ω\K) × (0, T ) with u0 ≥ 0 but not
identically zero.
We multiply both sides of the first equation in (1.1) by the test function |φ|p/u p−1,

where φ ∈ C∞
c (Ω\K) and integrate over Ω . The result is

1

2 − p

d

dt

∫

Ω

u2−p|φ|pdvg =
∫

Ω

divg
(
|∇gu|p−2∇gu

) |φ|p
u p−1 dvg

+
∫

Ω

V (x)|φ|pdvg +
∫

Ω

λuq−p+1|φ|pdvg.

(2.9)

The divergence theorem gives

A =
∫

Ω

divg
(
|∇gu|p−2∇gu

) |φ|p
u p−1 dvg = −

∫

Ω

|∇gu|p−2
〈

∇gu,∇g

( |φ|p
u p−1

)〉

dvg.

(2.10)
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Direct computation shows that

−|∇gu|p−2
〈

∇gu,∇g

( |φ|p
u p−1

)〉

= − p|∇gu|p−2 |φ|p−1

u p−1 〈∇gu,∇g|φ|〉

+ (p − 1)
|φ|p
u p

|∇gu|p.
(2.11)

Hence,

A =
∫

Ω

divg
(
|∇gu|p−2∇gu

) |φ|p
u p−1 dvg ≥ B (2.12)

where

B =
∫

Ω

(
(p − 1)|∇gu|p |φ|p

u p
− p|∇gu|p−1 |φ|p−1

u p−1 |∇gφ|
)
dvg.

Here, we can use the following elementary inequality. Let p > 1 and ω1 �= ω2 be
two positive real numbers. Then,

ω
p
1 − ω

p
2 − pωp−1

2 (ω1 − ω2) > 0,

whence

(p − 1)w p
2 − pw p−1

2 w1 > −w
p
1 .

We can take w2 = |φ|
u |∇gu| and w1 = |∇gφ|; then we have

B ≥ −
∫

Ω

|∇gφ|pdvg. (2.13)

Substituting (2.13) into (2.12) gives

A =
∫

Ω

divg(|∇gu|p−2∇gu)

( |φ|p
u p−1

)

dvg ≥ −
∫

Ω

|∇gφ|pdvg. (2.14)

Substituting (2.14) into (2.9) and integrating from t1 to t2, where 0 < t1 < t2 < T ,
we obtain ∫

Ω

V (x)|φ|pdvg −
∫

Ω

|∇gφ|pdvg ≤ L + R, (2.15)

where

L = 1

(2 − p)(t2 − t1)

∫

Ω

(
u2−p(x, t2) − u2−p(x, t1)

)
|φ|pdvg

and

R = −λ

∫

Ω

∫ t2

t1
uq−p+1|φ|pdtdvg.

Using Jensen’s inequality for concave functions, we obtain, since 2n
n+1 ≤ p < 2,

∫

Ω

(u(x, ti ))
(2−p)n

p dvg ≤ C(Vol(Ω))

(∫

Ω

u(x, ti )dvg

) (2−p)n
p

< ∞.
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Therefore,

u2−p(x, ti ) ∈ L
n
p (Ω).

For the second integral on the right-hand side of (2.15), let F(x) := −λ
∫ t2
t1
uq−p+1dt .

Applying Jensen’s inequality, we deduce

F(x) ∈ L
n
p (Ω).

By Lemma 2.1, we have

R ≤ ε

2(1 − ε)

∫

Ω

|∇gφ|pdvg + C(ε)

∫

Ω

|φ|pdvg

+ ε

2(1 − ε)

∫

Ω

|∇gφ|pdvg + C(ε)

∫

Ω

|φ|pdvg

= ε

(1 − ε)

∫

Ω

|∇gφ|pdvg + C(ε)

∫

Ω

|φ|pdvg.

(2.16)

Substituting (2.16) into (2.15) gives
∫

Ω

V (x)|φ|pdvg −
∫

Ω

|∇gφ|pdvg ≤ ε

1 − ε

∫

Ω

|∇gφ|pdvg + C(ε)

∫

Ω

|φ|pdvg.

(2.17)
Therefore,

inf
0 �≡φ∈C∞

c (Ω\K)

∫

Ω
|∇gφ|pdvg − ∫

Ω
(1 − ε)V (x)|φ|pdvg

∫

Ω
|φ|pdvg

≥ −(1 − ε)C(ε) > −∞.

(2.18)
This contradicts our assumption. The proof of the Theorem (2.1) is now complete. �

Remark 2.2. It is now clear that assuming the existence of a positive solution of
problem (1.1) implies the following Hardy-type inequality,
∫

Ω

|∇gφ|pdv ≥ (1− ε)

∫

Ω

V (x)|φ|pdv − (1− ε)C(ε, a, λ, q,Vol(Ω))

∫

Ω

|φ|pdv.

(2.19)

As we mentioned above, our second goal is to present Hardy- and Leray-type
inequalities with remainders on a complete noncompact Riemannian manifold M .

3. Improved Hardy- and Leray-type inequalities and applications

Hardy inequality. Let Ω be a smooth bounded domain with 0 ∈ Ω in R
n or

Ω = R
n . The L p version of Hardy’s inequality states that

∫

Ω

|∇φ(x)|pdx ≥
∣
∣
∣
∣
n − p

p

∣
∣
∣
∣

p ∫

Ω

|φ(x)|p
|x |p dx, (3.1)
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and holds for all φ ∈ C∞
c (Ω) if 1 < p < n, and for all φ ∈ C∞

c (Ω\{0}) if p ≥ n.
Here, the constant | n−p

p |p is sharp, in the sense that

inf
0 �≡φ∈C∞

c (Ω)

∫

Ω
|∇φ|pdx

∫

Ω
|φ|p
|x |p dx

=
∣
∣
∣
∣
n − p

p

∣
∣
∣
∣

p

.

The interest in the inequality p ≥ n is due to the fact that in (3.1) for p = n, p−n = 0
cannot be replaced by any positive number.

Leray inequality. If n = p, then there is a different version of the Hardy inequality.
In [26], Leray proved the following integral inequality, which involves singularities at
both the center and boundary of the two-dimensional unit ball,

∫

B1
|∇φ|2dx ≥ 1

4

∫

B1

|φ|2

|x |2
(
ln

(
1
|x |

))2 dx, (3.2)

where B1 is the unit ball in R
2 centered at the origin and φ ∈ C∞

c (B1\{0}). Further-
more, Adimurthi and Sandeep [2] obtained the multidimensional form of (3.2) and
also showed that the constant 1

4 is sharp,

inf
0 �≡φ∈C∞

c (B1\{0})

∫

B1
|∇φ|2dx

∫

B1
|φ|2

|x |2
(
ln

(
1
|x |

))2 dx
= 1

4
.

There has been a lot of research concerning Hardy and Leray inequalities on the
Euclidean space R

n and, in particular, sharp inequalities as well as their improved
versions (in the sense that nonnegative terms are added in the right-hand side of (3.1)
and (3.2) )which have attracted a lot of attention because of their application to singular
problems, e.g., [1,3,4,7,13,32,36] and the references therein.
On the other hand, there has been a growing literature on Hardy and Leray inequal-

ities in Riemannian manifolds. In an interesting paper, Carron [9] studied weighted
L2-Hardy inequalities under some geometric assumptions on the weight function ρ

and obtained, among other results, the following inequality,
∫

M
ρα|∇gφ|2dx ≥

(C + α − 1

2

)2
∫

M
ρα φ2

ρ2 dx, (3.3)

where α ∈ R,C+α−1 > 0, φ ∈ C∞
c (M\ρ−1{0}) and the weight function ρ satisfies

|∇gρ| = 1 and Δgρ ≥ C
ρ
in the sense of distributions.

Recall that a complete Riemannian manifold M is said to be nonparabolic if it
admits a (minimal) positive Green function G for Δg . In [27], Li and Wang proved,
among other results, that existence of a weighted Hardy-type inequality is equivalent
to nonparabolicity. Furthermore, they obtained the following L2-Hardy inequality

∫

M
|∇gφ|2dv ≥ 1

4

∫

M

|∇gG(p, x)|2
G2(p, x)

φ2dv,
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where φ ∈ C∞
c (M) and G(p, x) is the minimal positive Green’s function defined on

M with a pole at the point p ∈ M .

Under the same hypotheses on theweight functionρ in [9],Kombe andÖzaydın [23]
extended the result of Carron to the case p �= 2. In [24], they obtained the following
(improved) Hardy inequality involving two weight functions ρ and δ

∫

M
|∇gφ|2dv ≥

(
C − 1

2

)2 ∫

M

φ2

ρ2 dv + 1

4

∫

M

|∇gδ|2
δ2

φ2dv, (3.4)

where φ ∈ C∞
c (M), C > 1 and −divg(ρ1−C∇gδ) ≥ 0 in the sense of distributions.

Let Ω be a bounded domain with smooth boundary in M and supΩ(ρ) < 1. Then, the
choice of δ = log( 1

ρ
) in (3.4) yields

∫

Ω

|∇gφ|2dv ≥ 1

4

∫

Ω

|φ|2

ρ2
(
ln

(
1
ρ

))2 dv, (3.5)

which is the analogue of Leray’s inequality (3.2) .

On the other hand, D’Ambrosio and Dipierro [11] obtained the following inequality
which includes the Hardy- and Leray-type inequalities,

∫

M
|∇gφ|pdv ≥

( p − 1

p

)p
∫

M

|∇gρ|p
ρ p

|φ|pdv, (3.6)

where φ ∈ C∞
c (M), p > 1 and the weight function ρ satisfies −Δp,gρ ≥ 0 in the

sense of distributions.

In view of all these developments, it is natural to ask whether the Hardy and Leray
inequalities given above can be combined under a single inequality for Ω ⊂ M ,

∫

Ω

|∇gφ|pdvg ≥ Hp

∫

Ω

|∇gρ|p
ρ p

|φ|pdvg + L p

∫

Ω

|φ(x)|p
ρ p

(
ln 1

ρ

)p dvg (3.7)

where Hp and L p are positive constants.

While our aim is to answer abovequestion,we see that ourmethodnot only combines
Hardy and Leray inequalities but also allows us to achieve some other inequalities with
explicit constants in the hyperbolic space Hn .

We begin this section by proving a new L p-Leray inequality with remainders. In-
deed, our proof is simple and uses minimal assumption on the weight function ρ.

Theorem 3.1. Let Ω be a bounded domain with smooth boundary ∂Ω in M and
1 < p < ∞. Let ρ be a nonnegative function on Ω such that supΩ(ρ) < 1. Then, the
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following inequality holds:

∫

Ω

|∇gφ|pdvg ≥
(
p − 1

p

)p ∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p

|φ|pdvg

+
(
p − 1

p

)p−1 ∫

Ω

Δp,gρ

(ρ log 1
ρ
)p−1

|φ|pdvg

− (p − 1)p

pp−1

∫

Ω

|∇gρ|p

ρ p
(
log 1

ρ

)p−1 |φ|pdvg,

(3.8)

for all φ ∈ C∞
c (Ω).

Proof. Let u = − log
(
log 1

ρ

)
. A direct computation shows that

Δp,gu = Δp,gρ

(ρ log 1
ρ
)p−1

− (p − 1)|∇gρ|p

ρ p
(
log 1

ρ

)p−1 + (p − 1)|∇gρ|p
ρ p

(
log 1

ρ

)p , ρ �= 0, 1. (3.9)

Multiplying both sides of (3.9) by the test function |φ|p and integrating over Ω yields
∫

Ω

Δp,gu|φ|pdvg =
∫

Ω

Δp,gρ

(ρ log 1
ρ
)p−1

|φ|pdvg

− (p − 1)
∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p−1

|φ|pdvg

+ (p − 1)
∫

Ω

|∇gρ|p
ρ p

(
log 1

ρ

)p |φ|pdvg.

(3.10)

Application of integration by parts (i.e., the divergence theorem) to the left side of
(3.10) gives

1

p

∫

Ω

Δp,gu|φ|pdvg = −
∫

Ω

|φ|p−1〈∇gφ,∇gu〉|∇gu|p−2dvg

≤
∫

Ω

|φ|p−1|∇gφ||∇gu|p−1dvg.

(3.11)

Recall Young’s inequality with ε: for any ε > 0, and a, b ≥ 0,

ab ≤ εa p + (pε)−1/(p−1) (p − 1)

p
b

p
p−1 .

Hence by Young’s inequality, we conclude that

∫

Ω

|φ|p−1|∇gφ||∇gu|p−1dvg ≤ ε

∫

Ω

|∇gφ|pdvg + c(ε)
∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p

|φ|pdvg,

(3.12)
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where c(ε) =
(
p−1
p

)
(pε)

1
1−p . Substituting (3.12) into (3.10) gives

∫

Ω

|∇gφ|pdvg ≥
(
p − 1

pε

)(
1 − (pε)

1
1−p

) ∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p

|φ|pdvg

+ 1

pε

∫

Ω

Δp,gρ

(ρ log 1
ρ
)p−1

|φ|pdvg

− p − 1

pε

∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p−1

|φ|pdvg.

(3.13)

Note that the function ε → p−1
pε

(
1 − (pε)

1
1−p

)
attains the maximum value for ε =

pp−2

(p−1)p−1 , and this maximum is equal to (
p−1
p )p. Now, we have the desired inequality

(3.8),
∫

Ω

|∇gφ|pdvg ≥
(
p − 1

p

)p ∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p

|φ|pdvg

+
(
p − 1

p

)p−1 ∫

Ω

Δp,gρ

(ρ log 1
ρ
)p−1

|φ|pdvg

− (p − 1)p

pp−1

∫

Ω

|∇gρ|p
ρ p(log 1

ρ
)p−1

|φ|pdvg.

�

Let us now turn our attention to the question of combining the Hardy and Leray type
inequalities under a single inequality.We should note that the trace of such inequalities
appears in [25]. Now, under new assumptions on the weight functions ρ and δ, our
first result in this direction is as follows.

Theorem 3.2. Let M be a complete noncompact Riemannian manifold of dimension

n > 1. Let ρ and δ be nonnegative functions on M such that Δp,gρ ≥ C
|∇gρ|p

ρ
and

−divg(ρ p−C−1 |∇gδ|p−2

δ p−2 ∇gδ) ≥ 0 in the sense of distributions where C > 0 and p ≥ 2.
Then, the following inequality holds:

∫

M
|∇gφ|pdvg ≥

(
C + 1 − p

p

)p ∫

M

|∇gρ|p
ρ p

|φ|pdvg

+
(

1

2p−1 − 1

)
1

pp

∫

M

|∇gδ|p
δ p

|φ|pdvg

(3.14)

for all φ ∈ C∞
c (M\ρ−1 {0}).

Proof. Let φ ∈ C∞
c (M\ρ−1 {0}) and define φ = ρβψ where β < 0. Then, we have

|∇g(ρ
βψ)|p = |βρβ−1∇gρψ + ρβ∇gψ |p.
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We now use the following convexity inequality which is valid for any a, b ∈ R
n and

p ≥ 2,

|a + b|p − |a|p ≥ p|a|p−2a · b + c(p)|b|p
where c(p) = 1

2p−1−1
. This yields

|∇gφ|p ≥|β|pρ pβ−p|∇gρ|p|ψ |p + β|β|p−2ρ pβ−p+1〈∇g(|ψ |p),∇gρ〉|∇gρ|p−2

+ c(p)ρ pβ |∇gψ |p.
(3.15)

Applying integration by parts over M gives
∫

M
|∇gφ|pdvg ≥ |β|p

∫

M
ρ pβ−p|∇gρ|p|ψ |pdvg

− β|β|p−2
∫

M
divg

(
ρ pβ−p+1|∇gρ|p−2∇gρ

)
|ψ |pdvg

+ c(p)
∫

M
ρ pβ |∇gψ |pdvg.

(3.16)
Since

Δp,gρ ≥ C |∇gρ|p
ρ

,

we obtain the following inequality

divg
(
ρ pβ−p+1|∇gρ|p−2∇gρ

)
≥ (βp − p + 1 + C)ρβp−p|∇gρ|p. (3.17)

Substituting (3.17) in (3.16), we have

−β|β|p−2
∫

M
divg(ρ

βp−p+1∇gρ|∇gρ|p−2)|ψ |pdvg

≥ −β|β|p−2(βp − p + 1 + C)

∫

M
ρβp−p|∇gρ|p|ψ |pdvg.

(3.18)

Combining (3.18) and (3.16), we obtain
∫

M
|∇gφ|pdvg ≥ f (β)

∫

M
ρβp−p|∇gρ|p|ψ |pdvg + c(p)

∫

M
ρβp|∇gψ |pdvg,

(3.19)
where

f (β) = −β|β|p−2(βp − p + 1 + C) + |β|p.
Since f (β) attains its maximum for β0 = p−C−1

p and its maximum value is equal to

f (β0) =
(
C+1−p

p

)p
. The inequality (3.19) becomes

∫

M
|∇gφ|pdvg ≥

(
C + 1 − p

p

)p ∫

M
ρ−C−1|∇gρ|p|ψ |pdvg

+ c(p)
∫

M
ρ p−C−1|∇gψ |pdvg.

(3.20)
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Now, we focus on the second term on the right-hand side of this inequality. Let us
define a new variable ϕ(x) := δ(x)−1/pψ(x) where δ(x) is a nonnegative function
and δ(x) ∈ C∞(M\ρ−1 {0}). It follows from the convexity inequality that

|∇gψ |p ≥ |ϕ|p
pp

δ1−p|∇gδ|p + p1−p|∇gδ|p−2δ2−p〈∇gδ,∇g(|ϕ|p)〉,

and therefore
∫

M
ρ p−C−1|∇gψ |pdvg ≥ 1

pp

∫

M
ρ p−C−1|∇gδ|pδ1−p|ϕ|pdvg

+ p1−p
∫

M
ρ p−C−1 |∇gδ|p−2

δ p−2 〈∇gδ,∇g(|ϕ|p)〉dvg.

(3.21)
Here, first we apply integration by parts to the second term on the right-hand side of
(3.21) to get

∫

M
ρ p−C−1|∇gψ |pdvg ≥ 1

pp

∫

M
ρ p−C−1|∇gδ|pδ1−p|ϕ|pdvg

− p1−p
∫

M
divg(ρ

p−C−1 |∇gδ|p−2

δ p−2 ∇gδ)|ϕ|pdvg,

then using the differential inequality−divg(ρ p−C−1 |∇gδ|p−2

δ p−2 ∇gδ) ≥ 0 and taking back

substitution ϕ = ρ
−p+C+1

p φδ−1/p, we have

∫

M
ρ p−C−1|∇gψ |pdvg ≥ 1

pp

∫

M

|∇gδ|p
δ p

|φ|pdvg. (3.22)

Substituting (3.22) into (3.20) gives the desired inequality

∫

M
|∇gφ|pdvg ≥

(
C + 1 − p

p

)p ∫

M

|∇gρ|p
ρ p

|φ|pdvg + c(p)

pp

∫

M

|∇gδ|p
δ p

|φ|pdvg.

�

We note that a similar inequality also holds for 1 < p < 2, and in this case, we use
the following inequality

|a + b|p − |a|p ≥ c(p)
|b|2

(|a| + |b|)2−p
+ p|a|p−2a · b

where c(p) > 0 (see [29]).
A direct computation shows that δ := ln 1

ρ
satisfies the assumption of Theorem 3.2.

Hence, we have the following inequality which includes both Hardy- and Leray-type
inequalities.
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Corollary 3.1. Let Ω be a bounded domain with smooth boundary ∂Ω in M. Let ρ

be a nonnegative function such that Δp,gρ ≥ C|∇gρ|p
ρ

in the sense of distributions
where C > 1, p ≥ 2 and supΩρ < 1. Then the following inequality holds,

∫

Ω

|∇gφ|pdvg ≥
(
C + 1 − p

p

)p ∫

Ω

|∇gρ|p
ρ p

|φ|pdvg

+ (
1

2p−1 − 1
)
1

pp

∫

Ω

|∇gρ|p
ρ p

(
ln 1

ρ

)p |φ|pdvg

(3.23)

for all φ ∈ C∞
c (Ω\ρ−1 {0}).

The following theorem is the final theorem of this section, where we slightly change
our assumptions on the weight functions ρ and δ.

Theorem 3.3. Let M be a complete noncompact Riemannian manifold of dimension
n > 1. Let ρ and δ be nonnegative functions on M such that −Δp,gρ ≥ 0 and
−divg(ρ p−1|∇gδ|p−2∇gδ) ≥ 0 in the sense of distributions where p ≥ 2. Then, we
have

∫

M
|∇gφ|pdvg ≥

( p − 1

p

)p
∫

M

|∇gρ|p
ρ p

|φ|pdvg

−
( p − 1

p

)p−1
∫

M

Δp,gρ

ρ p−1 |φ|pdvg

+ (
1

2p−1 − 1
)
( p − 1

p

)p
∫

M

|∇gδ|p
δ p

|φ|pdvg

(3.24)

for all φ ∈ C∞
c (M\ρ−1 {0}).

Proof. The proof is similar to that of Theorem 3.2 and therefore omitted. �

In the following subsection, we present some applications of the above theorems in
the hyperbolic space Hn .

3.1. Hyperbolic space

We begin by quoting some preliminary facts which will be needed in the sequel and
refer to [15,33] for more precise information. The hyperbolic space Hn (n ≥ 2) is a
complete simply connected Riemannian manifold having constant sectional curvature
equal to −1. There are several models forHn and we will use the Poincaré ball model
B
n in this paper.
The Poincaré ball model for the hyperbolic space is

B
n = {x = (x1, . . . , xn) ∈ R

n| |x | < 1}
endowed with the Riemannian metric gBn = p2(x)gRn , where p(x) = 2

1−|x |2 and gRn

is the canonical Euclidean metric. Hence, {pdxi }ni=1 gives an orthonormal basis of the
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tangent space at x = (x1, . . . , xn) in B
n . The corresponding dual basis is { 1p ∂

∂xi
}ni=1,

thus the hyperbolic gradient and the Laplace Beltrami operator are

∇Hn u = ∇u

p
,

ΔHn u = p−ndiv(pn−2∇u);

where ∇ and div denote the Euclidean gradient and divergence in Rn , respectively.
The hyperbolic distance dHn (x, y) between x, y ∈ B

n in the Poincaré ball model is
given by the formula

dHn (x, y) = arccosh
(
1 + 2|x − y|2

(1 − |x |2)(1 − |y|2)
)
.

From this, we immediately obtain for x ∈ B
n ,

ρ(x) := dHn (0, x) = 2arctanh|x |
= log

(1 + |x |
1 − |x |

)

which is the distance from x ∈ B
n to the origin. Moreover, the geodesic curves

passing through the origin are the diameters of Bn along with open arcs of circles in
B
n perpendicular to the boundary at ∞, ∂Bn = S

n−1 = {x ∈ R
n : |x | = 1}.

The hyperbolic volume element is given by

dv = pn(x)dx =
( 2

1 − r2

)n
rn−1drdσ

where dx denotes the Lebesgue measure in B
n and dσ is the normalized surface

measure on S
n−1. Note that the hyperbolic volume element dv can be written in

geodesic polar coordinates as

dv = (sinh ρ)n−1dρdσ.

A hyperbolic ball in Bn with center 0 and hyperbolic radius R ∈ (0,∞) is defined
by

BR = {x ∈ H
n | dHn (0, x) < R};

and note thatBR is also theEuclidean ballwith center 0 and radius S = tanh R
2 ∈ (0, 1).

The following polar coordinate integration formula holds for f ∈ L1(Hn),

∫

Hn
f dv =

∫ ∞

0

( ∫

Sn−1
f (ρ, θ)dσ

)
(sinh ρ)n−1dρ.
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It is clear that the volume of a hyperbolic ball BR is

Vol(BR) = nωn

∫ R

0
(sinh ρ)n−1dρ,

where ωn denotes the volume of the n-dimensional Euclidean unit ball.
Furthermore, the following estimate holds,

Vol(BR) = nωn

∫ R

0
(sinh ρ)n−1dρ ≤ ωn(sinh R)n .

We have the following two relations for the distance function d(x) := log( 1+|x |
1−|x | )

|∇Hn d| = 1,

ΔHn d ≥ n − 1

ρ
, x �= 0.

The following Poincaré inequality in H
n is due to McKean [30] for p = 2 and

generalized for any p > 1 by Strichartz [35],

∫

Hn
|∇Hnφ|pdv ≥

(
n − 1

p

)p ∫

Hn
|φ|pdv (3.25)

where φ ∈ C∞
c (Hn) and 1 ≤ p < ∞. Furthermore, the constant ( n−1

p )p is sharp (see
[6,31]).

3.2. Applications of Theorems 3.1–3.3

In this subsection, we present several Hardy-, Leray- and Poincaré-type inequali-
ties with remainders after making suitable choices of weights ρ and δ satisfying the
hypothesis in Theorems 3.1–3.3 in the hyperbolic space Hn .

Using Theorem 3.1 with ρ := dHn (0, x) = log( 1+|x |
1−|x | ), we immediately obtain the

following corollary.

Corollary 3.2. Let B1 be the unit hyperbolic ball in Hn, n ≥ 2 and 1 < p ≤ n. Then
we have,

∫

B1

|∇Hnφ|pdv ≥
(
p − 1

p

)p ∫

B1

|φ|p
ρ p(log 1

ρ
)p

dv

+ (n − p)

(
p − 1

p

)p−1 ∫

B1

|φ|p
ρ p(log 1

ρ
)p−1

dv

(3.26)

for all φ ∈ C∞
c (B1). Furthermore, the constant (

p−1
p )p is sharp.
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Proof. To show that the constant ( p−1
p )p is sharp, we use the following function:

φ(ρ) =

⎧
⎪⎨

⎪⎩

ρ
a

(
ln 1

a

) p−1
p (1+ε)

if 0 ≤ ρ ≤ a
(
ln 1

ρ

) p−1
p (1+ε)

if a ≤ ρ ≤ 1

where a is a constant. Notice that φ(ρ) is a smooth function with compact support in
H

n , direct and tedious computation shows that ( p−1
p )p is the best constant,

(
p − 1

p

)p

= lim
ε→0

∫

B1
|∇Hnφ|pdv

∫

B1

|φ|p
ρ p(log 1

ρ
)p
dv

.

�

Wenow turn our attention to some applications of Theorem 3.2. First, let us consider
the pair of functions,

ρ := log

(
1 + |x |
1 − |x |

)

and δ := e(2p−1−1)
1
p (1−n)ρ .

It is obvious that they fulfill the hypotheses of Theorem 3.2, hence we have the fol-
lowing Hardy–Poincaré-type inequality.

Corollary 3.3. Let BR be the hyperbolic ball in H
n, centered at 0 and radius R =

p−1
n−1 ( 1

2p−1−1
)
1
p where 2 ≤ p ≤ n. Then, the following inequality holds,

∫

BR

|∇Hnφ|pdv ≥
(
n − p

p

)p ∫

BR

|φ|p
ρ p

dv +
(
n − 1

p

)p ∫

BR

|φ|pdv (3.27)

for all φ ∈ C∞
c (BR).

On the other hand, by making the choices

ρ := log

(
1 + |x |
1 − |x |

)

and δ :=
(

ln
1

ρ

)p−1

,

we derive the following Hardy–Leray-type inequality.

Corollary 3.4. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n, 2 ≤

p ≤ n and supΩd < 1. Then for all φ ∈ C∞
c (Ω), we have

∫

Ω

|∇Hnφ|pdv ≥
(
n − p

p

)p ∫

Ω

|φ|p
ρ p

dv

+
(

1

2p−1 − 1

) (
p − 1

p

)p ∫

Ω

|φ|p
ρ p

(
ln 1

ρ

)p dv.
(3.28)
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Finally, let us look at the some consequences of Theorem 3.3. We consider various
functions ρ and δ to achieve different inequalities. Although some of the following
inequalities are similar to each other, we should note that they contain different con-
stants. To avoid confusion, we always first write down the term containing the sharp
constant and the name associated with that term.
In the following corollaries (Corollaries 3.5–3.8), d(x) = log( 1+|x |

1−|x | ) denotes the
hyperbolic distance between the origin and the point x ∈ B

n .
Now, let us consider the special functions

ρ := d
p−n
p−1 and δ := ln

1

d
.

We have the Hardy–Leray-type inequality.

Corollary 3.5. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n, 2 ≤

p ≤ n and supΩd < 1. Then for all φ ∈ C∞
c (Ω), we have

∫

Ω

|∇Hnφ|pdv ≥
(
n − p

p

)p ∫

Ω

|φ|p
d p

dv

+
(

1

2p−1 − 1

)(
p − 1

p

)p ∫

Ω

|φ|p
d p

(
ln 1

d

)p dv.

(3.29)

Another application of Theorem 3.3 with special functions

ρ := d
p−n
p−1 and δ := e−d

leads the following Hardy-Poincaré type inequality.

Corollary 3.6. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n, 2 ≤

p ≤ n and supΩd < 1. Then for all φ ∈ C∞
c (Ω), we have

∫

Ω

|∇Hnφ|pdv ≥
(
n − p

p

)p ∫

Ω

|φ|p
d p

dv

+
(

1

2p−1 − 1

) (
p − 1

p

)p ∫

Ω

|φ|pdv.

(3.30)

On the other hand, by making the choices

ρ := ln
1

d
and δ := e−d

we derive the following Leray–Poincaré inequality.

Corollary 3.7. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n, 2 ≤

p ≤ n and supΩd < e
1−p
n−p . Then for all φ ∈ C∞

c (Ω), we have
∫

Ω

|∇Hnφ|pdv ≥
(
p − 1

p

)p ∫

Ω

|φ|p
d p(ln 1

d )p
dv

+
(

1

2p−1 − 1

) (
p − 1

p

)p ∫

Ω

|φ|pdv.

(3.31)
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Another consequence of the Theorem 3.3 with the special functions

ρ := e
(1−n)d
p−1 and δ := ln

1

d

leads us to the following Poincaré–Leray-type inequality.

Corollary 3.8. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n, 2 ≤

p ≤ n and supΩd <
n−p
n−1 . Then, we have

∫

Ω

|∇Hnφ|pdv ≥
(
n − 1

p

)p ∫

Ω

|φ|pdv

+
(

1

2p−1 − 1

) (
p − 1

p

)p ∫

Ω

|φ|p
d p(ln 1

d )p
dv

(3.32)

for all φ ∈ C∞
c (Ω).

3.3. Applications of Theorem 2.1

We are now ready to present some applications of Theorem 2.1.
In our first result below, we consider the Hardy potential.

Corollary 3.9. Let Ω be a bounded domain with smooth boundary ∂Ω inHn, n ≥ 2,
0 ∈ Ω , Hp = (

n−p
p )p and V (ρ) = c

ρ p where ρ = log( 1+|x |
1−|x | ). Then, the problem (1.1)

has no generalized positive local solution off ofK = {0} if c > Hp and
2n
n+1 ≤ p < 2.

Proof. Given ε > 0, we define the radial function φ(x) = ϕ(ρ) by

ϕ(ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε
−n
p ρ if 0 ≤ ρ ≤ ε,

ρ
− n−p

p if ε ≤ ρ ≤ 1,

2 − ρ if 1 ≤ ρ ≤ 2,

0 if ρ ≥ 2.

(3.33)

Then,

|∇Hnφ|p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε−n if 0 < ρ < ε,

(
n−p
p )pρ−n if ε < ρ < 1,

1 if 1 < ρ < 2,

0 if ρ > 2.

(3.34)

Without loss of generality, we assume that B2 = {x ∈ H
n | ρ < 2} ⊂ Ω; if not, we

simply redefine φ, replacing 2 by R where BR ⊂ Ω . This results only in notational
changes in the proof that follows.
We want to show that

σin f := inf
0 �≡φ∈C∞

c (Ω\K)

∫

Ω
|∇Hnφ|pdv − ∫

Ω
(1−ε)c

ρ p |φ|p(x)dv
∫

Ω
|φ|pdv

= −∞.
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Direct computation shows that
∫

Ω

|∇Hnφ|pdv = nωn

∫ ε

0
ε−n(sinh ρ)n−1dρ

+ nωn

∫ 1

ε

(
n − p

p

)p

ρ−n(sinh ρ)n−1dρ

+ nωn

∫ 2

1
(sinh ρ)n−1dρ.

(3.35)

Similarly, we get

(1 − ε)c
∫

Ω

|φ|p
ρ p

dv = c(1 − ε)nωn

( ∫ ε

0
ε−n(sinh ρ)n−1dρ

+
∫ 1

ε

ρ−n(sinh ρ)n−1dρ

+
∫ 2

1

(
2 − ρ

ρ

)p

(sinh ρ)n−1dρ
)
.

(3.36)

It is clear that
∫

Ω

|∇Hnφ|pdv −
∫

Ω

(1 − ε)c

ρ p
|φ|pdv = nωn A

∫ ε

0
(sinh ρ)n−1dρ

+ nωn B
∫ 1

ε

ρ−n(sinh ρ)n−1dρ

+ nωn

∫ 2

1
(sinh ρ)n−1dρ

+ nωnC
∫ 2

1

(
2 − ρ

ρ

)p

(sinh ρ)n−1dρ,

(3.37)
where A = ε−n

(
1− c(1− ε)

)
, B = (

n−p
p )p − c(1− ε) and C = −c(1− ε). Note that

the first, third and fourth integrals on the right hand side of (3.37) have finite values.
Hence, we have

∫

Ω

|∇Hnφ|pdv −
∫

Ω

(1 − ε)c

ρ p
|φ|pdv = nωn B

∫ 1

ε

ρ−n(sinh ρ)n−1dρ + C̃

(3.38)
where C̃ is a positive constant.

On the other hand,
∫

Ω

|φ|pdv =
∫

Bε

ε−nρ pdv +
∫

B1\Bε

ρ p−ndv +
∫

B2\B1

(2 − ρ)pdv

≥ nωn

∫ 1

ε

ρ p−n(sinh ρ)n−1dρ

≥ nωn

∫ 1

ε

ρ p−1dρ

= nωn
1 − ε p

p

(3.39)
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since sinh ρ ≥ ρ. Substituting (3.38) and (3.39) into the Rayleigh quotient gives

R =
∫

Ω
|∇Hnφ|pdv − ∫

Ω
c(1−ε)

ρ p |φ|pdv
∫

Ω
φ pdv

≤
nωn

(( (
n−p
p

)p − c(1 − ε)
) ∫ 1

ε
ρ−n(sinh ρ)n−1dρ

)
+ C̃

nωn
1−ε p

p

.

(3.40)

Note that ( n−p
p )p − c(1 − ε) < 0 and using the fact ρ ≤ sinh ρ ≤ 2ρ for ρ ∈ [0, 1],

we get

lim
ε→0

∫ 1

ε

ρ−n(sinh ρ)n−1dρ = +∞.

Hence, for ε > 0 small enough,

inf
0 �≡φ∈C∞

c (Ω\{0})

∫

Ω
|∇Hnφ|pdv − ∫

Ω
(1−ε)c

ρ p |φ|pdv
∫

Ω
|φ|pdv

= −∞.

The proof of Corollary 3.9 is now complete. �

Corollary 3.10. LetΩ be a bounded domain with smooth boundary ∂Ω inHn, n ≥ 2,
0 ∈ Ω , Hp = (

n−p
p )p, V (ρ) = c

ρ p + β
ρ p sin( 1

ρα ), where ρ = log( 1+|x |
1−|x | ), c > 0, α > 0

and β ∈ R
n\{0}. Then the problem (1.1) has no generalized positive local solution off

of K if c > Hp and
2n
n+1 ≤ p < 2.

Proof. In order to show that σinf = −∞, we use the same test function φ in Corollary
3.9. The details are omitted. �

In the following corollary, we use the Leray potential obtained from Corollary 3.2
which is a result of Theorem 3.1.

Corollary 3.11. Let B1 be the unit hyperbolic ball in H
n, n ≥ 2, V (ρ) = c

ρ p(ln 1
ρ
)p

where ρ = log( 1+|x |
1−|x | ) and L p = (

p−1
p )p. Then, (1.1) has no generalized positive

local solution off of K = {0} ∪ ∂B1 if c > L p and
2n
n+1 ≤ p < 2.

Proof. Let φ(x) = ϕ(ρ) be the radial function defined by

ϕ(ρ) =
⎧
⎨

⎩

1 if 0 ≤ ρ ≤ 1
e

(
ln 1

ρ

)(
p−1
p )(1+ε)

if 1
e ≤ ρ ≤ 1,

(3.41)

where ε > 0. Then

|∇Hnφ(x)|p =
⎧
⎨

⎩

0 if 0 < ρ < 1
e ,(

p−1
p

)p
(1 + ε)p(ln 1

ρ
)pε−1−ε 1

ρ p if 1
e < ρ < 1.

(3.42)
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A direct computation shows that

∫

B1

|∇Hnφ|pdv = nwn

(
p − 1

p

)p

(1 + ε)p
∫ 1

1
e

(

ln
1

ρ

)pε−1−ε 1

ρ p
(sinh ρ)n−1dρ.

(3.43)
Similarly, we get

∫

B1

c

ρ p
(
ln 1

ρ

)p |φ|pdv =nwnc
∫ 1

e

0

(

ln
1

ρ

)−p 1

ρ p
(sinh ρ)n−1dρ

+ nwnc
∫ 1

1
e

(

ln
1

ρ

)pε−1−ε 1

ρ p
(sinh ρ)n−1dρ.

(3.44)

Since the first integral on the right-hand side of (3.44) is finite, we can write

∫

B1

c

ρ p(ln 1
ρ
)p

|φ|pdv = nwnc
∫ 1

1
e

(

ln
1

ρ

)pε−1−ε 1

ρ p
(sinh ρ)n−1dρ + C1 (3.45)

where C1 > 0.
On the other hand,

∫

B1

|φ|pdv =
∫

B 1
e

dv +
∫

B1\B 1
e

(ln
1

ρ
)(p−1)(1+ε)dv

≥ Vol(B 1
e
) = C2 > 0.

(3.46)

Substituting (3.43)–(3.46) into the Rayleigh quotient gives

R =
∫

B1
|∇Hnφ|pdv − ∫

B1

(1−ε)c
ρ p(ln 1

ρ
)p

|φ|pdv

∫

B1
|φ|pdv

≤
nωn

(
(
p−1
p )p(1 + ε)p − c + cε

) ∫ 1
1
e
(ln 1

ρ
)pε−1−ε 1

ρ p (sinh ρ)n−1dρ + C1

C2
.

(3.47)
The conclusion

lim
ε→0

R = −∞

follows from

lim
ε→0

∫ 1

1
e

(

ln
1

ρ

)pε−1−ε

ρn−p−1dρ = +∞

since ρ ≤ sinh ρ ≤ 2ρ for ρ ∈ [0, 1] and (
p−1
p )p(1 + ε)p − c + cε < 0 for ε > 0

small enough.
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The substitution z = ln(
1

ρ
) gives

I :=
∫ 1

1
e

(

ln
1

ρ

)pε−1−ε

ρn−p−1dρ =
∫ 1

0
z pε−1−εe(p−n)zdz.

Thus,

I ≥ ep−n

pε − ε
→ ∞

as ε → 0, which completes the proof. �
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