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Abstract
This study aims to carry out regional intensity − duration − frequency (IDF) equality using the relationship with IDF obtained 
from point frequency analysis. Eleven empirical equations used in the literature for seven climate regions of Turkey were 
calibrated using particle swarm optimization (PSO) and genetic algorithm (GA) optimization techniques and the obtained 
results were compared. In addition, in this study, new regional IDF equations were obtained for each region utilizing Multi-
Gene Genetic Programming (MGGP) method. Finally, Kruskal–Wallis (KW) test was applied to the IDF values obtained from 
the methods and the observed values. As a result of the study, it was observed that the coefficients of 11 empirical equations 
calibrated with PSO, and GA techniques were different from each other. The mean absolute error (MAE), root mean square 
error (RMSE), mean absolute relative error (MARE), coefficient of determination (R2), and Taylor diagram were used to 
evaluate the performances of PSO, GA, and MGGP techniques. According to the performance criteria, it has been determined 
that the IDF equations obtained by the MGGP method for the Eastern Anatolia, Aegean, Southeastern Anatolia, and Central 
Anatolia regions are more successful than the empirical equations calibrated with the PSO and GA method. The empirical 
IDF equations produced with PSO and the IDF equations acquired with MGGP have similar findings in the Mediterranean, 
Black Sea, and Marmara. In addition, the KW test results showed that the data of all models were from the same population.

Keywords Multi-gene genetic programming · Genetic algorithm · Particle swarm optimization · Turkey · Regional 
intensity–duration–frequency analysis

Introduction

Climatic extremes and weather have long been thought to 
be the root causes of environmental dangers including food 
shortages and landslides (Stephenson et al. 2016; Zahiri 
et al. 2016; Deb et al. 2018; Zeder and Fischer 2020; Şen and 
Kahya 2021). Extreme precipitation events could occur more 
common in the future as a result of global climate change 

(Dastagir 2015; Shahid et al. 2016; Hay et al. 2016; Lestari 
et al. 2019; Barbero et al. 2019). Climate change causes 
extreme precipitation events’ intensity, duration, and fre-
quency (IDF) (Mirhosseini et al. 2013; Yilmaz et al. 2014; 
Fadhel et al. 2017; Buba et al. 2017; Al-Wagdany 2021). 
The way the current and future urban drainage systems are 
constructed, operated, and maintained would be impacted 
by changes in IDF linkages (Sillmann et al. 2017; Moujahid 
et al. 2018; Cook et al. 2020; Gebru 2020). As a result, a 
better knowledge of the potential changes in the relationship 
between the characteristics of extreme rainfall events as a 
result of climate change is critical for developing long-term 
urban stormwater management strategies.

Many studies on hydrology and water resources fields, 
such as rainfall−runoff models, flood control structures, 
stormwater drainage projects, and watershed modeling, 
are need to IDF (Tyralis and Langousis 2019; Anılan et al. 
2022). IDF must also be discovered or predicted in urban 
hydrological applications (Borga et al. 2005; Egodawatta 
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et al. 2007; Aly et al. 2009). The capacity of these civil 
infrastructure systems must be adequately sized to avoid 
overdesign, which could result in financial losses, greater 
property damage, and possibly increased danger of death 
(Anılan et al. 2022). As a result, having accurate IDF esti-
mations is critical.

The IDF is a mathematical formula that connects the rain-
fall intensity I, duration D, and frequency of exceedance F. 
This relationship is commonly represented with curves that 
depict the change in rainfall intensity over time. Empirical 
and statistical methods are commonly used to create these 
curves.

The first IDF studies in the literature date back to 1932 
(Bernard 1932). Rainfall contour maps were created by Her-
shfield in 1963 to determine rainfall design depths for vari-
ous return intervals and durations (Hershfield 1963). Chen 
(1983) devised a generalized IDF formula for the USA based 
on three different precipitation depths: ten years one hour, 
ten years twenty-four hours, and one hundred years one hour. 
Froehlich (1995) developed duration equations—rainfall 
intensity for periods of 1–24 h for four US Weather Bureau-
defined geographical regions. García-Bartual and Schneider 
(2001) operating frequency analyses to a series of several 
extreme rainfall events in Spain, measured between 1925 
and 1992, and developed nine different empirical IDF equa-
tions. Yu et al. (2004) created a regional IDF connection for 
ungauged sites. Chang et al. (2013) developed Rain-IDF, 
a software tool for deriving an IDF relationship with an 
Excel add-in using Visual Basics for Applications (VBA). 
Ouali and Cannon (2018) estimated regional IDF curves 
at ungauged locations based on quantile regression. They 
compared linear quantile regression and nonlinear quantile 
regression using canonical correlation analysis and nonlinear 
canonical correlation analysis at sites across Canada for the 
IDF curve. They stated that nonlinear QR framework leads 
to the best results for estimation of IDF curves at ungauged 
sites. Adarsh and Janga Reddy (2018) developed an alter-
nate methodology employing the scale invariance property 
of rainfall, the empirical method, and extreme value model 
formulations to derive the hourly and sub-daily IDF connec-
tions for data-scarce regions. They claimed that the proposed 
approach was effective in extracting short-duration IDF cor-
relations from daily rainfall data.

Many researchers have conducted research around the 
world for empirical precipitation density prediction equa-
tions (Awadallah et al. 2017; Hayder and Al-Mukhtar 2021; 
Bulti et al. 2021; Galiatsatou and Iliadis 2022; Alramlawi 
and Fıstıkoğlu 2022). For example, Bell (1969) described 
IDF curves for specific locations in Russia. For the develop-
ment of IDF curves by various authors, there are academics 
from the Kingdom of Saudi Arabia (Al-Shaikh 1985; Al-
Khalaf 1997; Elsebaie 2012; Subyani and Al-Amri 2015; 
Al-Amri and Subyani 2017; Ewea et al. 2017; Elsebaie et al. 

2021). Several researchers analyze and estimate the IDF 
curves for the southern and northern parts of Iraq (Lamia 
Abdul Jaleel and Maha Atta Farawn 2013; Hamaamin 2016; 
Mahdi and Mohamedmeki 2020; Hasan and Saeed 2020; 
Kareem et al. 2022). Eman Ahmed Hassan El-Sayed (2011) 
created a collection of regional IDF curves for Egypt’s Sinai 
Peninsula using isohyet maps. Liew et al. (2014) used mete-
orological records from nearby stations to adapt the IDF 
curve in remote areas in Malaysia.

In the past, various academics have presented a variety 
of IDF curve creation methods, depending on the available 
data in Turkey. Karahan et al. (2007) used a genetic algo-
rithm (GA) method which could consistently calculate the 
IDF connection to predicting rainfall intensity and used 
mean square error at the cost function. They also reported a 
strong match between measured and predicted values, and 
they used the method to analyze IDF relationships in Tur-
key’s GAP region. According to these researchers, the GA 
approach was an effective tool for determining mathematical 
model parameters and successfully representing the supplied 
data (Karahan et al. 2008). Based on the easy generalization 
approach and the robust estimation procedure, Asikoglu and 
Benzeden (2014) developed two different IDF equations for 
the western region of Turkey using the Gumbel distributions 
and two-parameter lognormal distributions in frequency 
studies. The RMSE values of both methods were compared, 
and the former procedure produced superior rainfall inten-
sity readings than the latter. Şen (2019) developed a novel 
method for creating IDF curves using data from the Annual 
Daily Maximum Rainfall (ADMR). Four ADMR record-
ings from meteorology stations in Turkey’s Ceylanpinar dis-
trict, near the Syrian border, were subjected to the proposed 
approach. Başakın et al. (2021) used genetic programming 
(GP) to build an equation that used information from IDF 
associations obtained as the result of statistical frequency 
investigations to calculate severe rainfall intensities for four 
meteorological stations in the interior of Turkey. They also 
compared their model to one of the accessible empirical IDF 
equations in the literature. The particle swarm optimization 
(PSO) scheme was used to optimize the parameters of the 
empirical equation. Finally, they concluded that the equation 
developed using GP was more accurate than the equation 
derived using PSO. Görkemli et al. (2022) developed nine 
different equations for the regional IDF curves using the 
artificial bee colony programming (ABCP) method for the 
interior of Turkey. They also calibrated nine empirical IDF 
equations commonly used in the literature for the interior 
of Turkey with an Excel solver. According to the perfor-
mance criteria, they stated that the ABCP equations gave 
better results than the empirical equations for the entire 
IDF relationship between 2 and 10,000 years. Anılan et al. 
(2022) determined the regional IDF curves to the Black Sea 
region in the north of Turkey using the Log-Pearson Type 3 
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distribution. They calibrated the coefficients of the empirical 
formulas in the literature with the SPSS package program 
and obtained new equations with multiple nonlinear regres-
sion analysis. They stated that the equations they obtained 
as a result of their studies had sufficiently high reliability. 
They expressed that they concluded that the IDF relation-
ship would open new horizons and motivate future studies.

Scopus’ database was used to examine significant con-
centrations in the literature. In this database, 876 studies 
were identified related to intensity, duration and frequency 
keywords. A list of essential keywords for this research 
area was generated using the VOSviewer software (Fig. 1a) 
(VOSviewer 2022). Furthermore, within the adopted 
research timeline (Fig. 1a), it seems that many studies have 
been published from 2005 to the present and IDF studies are 
a current issue. The main focuses and most researched top-
ics in these studies are climate change, IDF curves, extreme 
precipitation, and the use of machine learning techniques in 
recent studies. The primary areas investigated by IDF stud-
ies are shown in Fig. 1b. Figure 1b shows that the USA is 
the most studied region (183), followed by the Canada (98), 
France (28), Brazil (65), India (48), Italy (46), etc. However, 
only (24) studies were conducted in Turkey, and it is in the 
12th place.

The motivation of this research is to examine the point 
frequency analyses of three stations selected from each 
region to quantitatively describe the regional IDF relations 
with seven different climate regions in Turkey. In the study, 
empirical equations whose parameters are adjusted using 
PSO and GA and MGGP method, which generates equations 
according to parameters, were used.

Material

Turkey is between 36°–42° north latitudes, and 26°–45° 
east longitudes and its surface area is 783,562  km2. Turkey 
is located between the temperate zone and the subtropical 
zone and is a region where four seasons are experienced. 
The region is surrounded by the sea on three sides, and the 
range and height of the mountains are different, resulting in 
different climate types. There are different climates in the 
interior and coastal regions of Turkey, with more temperate 
climate characteristics in the coastal regions and continental 
climate in the interior regions.

In the current study, 21 meteorology stations (three 
from each region) of the General Directorate of Meteorol-
ogy (MGM) in Turkey are observed; the annual maximum 
precipitation intensity values of various durations (5 min, 
15 min, 30 min, 1 h, 3 h, 6 h, 12 h, 24 h) were used. The 
series of 14 standard T periods of 2, 5, 10, 25, 50, 100, 200, 

500, 1000, 2000, 5000, and 1000 years were used at the 21 
sites in this investigation.

Between 1991 and 2020 (last climatic period), the aver-
age annual precipitation in Turkey is 573.4 mm. Since 
this average precipitation amount corresponds to approxi-
mately 450 billion  m3 of water, it is very important to 
know the relationship between precipitation intensity (i), 
precipitation duration (t), and recurrence period (T) (IDF) 
in the planning and operation of water resources projects. 
The locations of 21 meteorology stations used in the study 
are given in Fig. 2 (MGM 2022).

Figure 2 shows three stations randomly chosen from 7 
geographical regions of Turkey. All analyses representing 
the basins were analyzed using data from three stations. 
Irrigation is the most important factor affecting the effi-
ciency of agricultural activities in Turkey. Especially in 
the summer months, the need for water is quite high with 
the effect of arid and semi-arid climates. In our country, 
irrigation is very important due to the wide agricultural 
areas in Central Anatolia, Southeastern Anatolia, Aegean, 
and Mediterranean regions and the dry climate. In Tur-
key, 75% of the land cannot be irrigated and therefore the 
desired yield cannot be obtained (Yavuz 2018). As a result, 
the control and correct planning of water resources is very 
important for the study area. The precipitation data used 
in this study were obtained from the study conducted by 
Yavuz (2018).

Method

Frequency analyses

Statistical frequency analysis was created so that practi-
tioners may make probabilistic future predictions. It is also 
used to calculate the relationship between the magnitude 
and likelihood of hydrologic random variables reaching or 
not exceeding their limitations. Frequency analyses are com-
monly used in hydrology for extreme events such as peak 
flows and precipitations. A suitable probability distribution 
is used for frequency analysis, and one of the three-param-
eter probability distributions of generalized normal (GNO), 
also known as the three-parameter log–normal (LN3), Gum-
bel, 3-parameter Gamma distribution (P3) general extreme 
values (GEV), generalized logistic (GLO), and generalized 
Pareto (GPA) is usually used. The magnitude forecasting of 
the parameters of a probability distribution using observed 
series is an important step in frequency analysis, and also the 
traditional methods of moments and maximum likelihood 
are widely utilized (Görkemli et al. 2022).
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Fig. 1  a Keywords and b research regions in Scopus’ database
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The frequency analyses and precipitation intensity values 
used in this study were obtained from the study conducted 
by Yavuz (2018). For appropriate distributions (Table 1) and 
tests, this study can be reviewed.

Optimization with particle swarm optimization 
(PSO)

PSO is an algorithm inspired by swarm behavior (Kennedy 
and Eberhart 2010). Being population-based, PSO is based 
on information sharing within the herd. Individuals in the 
swarm are called particles and the position and velocity 
information of each particle is recorded. Optimization work 
is carried out by updating this speed and position informa-
tion in each iteration. This update is adjusted according to 
the particle’s current velocity information, its position, the 
best position of the swarm, and the best position in that itera-
tion. X represents particle position (direction) and v repre-
sents particle flight speed. Each x in the particle swarm is 

given a point, depending on the solution approach of the 
problem. Pbest represents the local best for each particle; 
Gbest represents the global best in the current generation. 
Particles record their best position (Pbest) and can be capa-
ble of finding the optimal position (Gbest) known to all par-
ticles in the swarm. In order to determine the position of the 
particle one step further, the velocity and the new position 
vector are obtained by utilizing the particle’s information up 
to that point (Eqs. 1 and 2).

In these equations, the inertia value of w is the constant 
to prevent the motion of the particle, the acceleration coef-
ficients c1 and c2, and r1 and r2 are a randomly generated 
values in the range of [0–1]. The algorithm starts the search 
process in the solution space with a random velocity and 

(1)vt+1
id

= wvt
i
+ ciri(pid − xt

id
) + c2r2(pgd − xt

id
),

(2)xt+1
id

= xt
id
+ vt+1

id
.

Fig. 2  Location of stations and seven geographical regions of Turkey

Table 1  As a result of frequency 
analysis, appropriate probability 
distribution functions and 
parameter estimation methods 
belong to 7 meteorological 
regions Yavuz (2018)

Regions Appropriate distributions Parameter estimation methods

Mediterranean region GEV Probability weighted moments
Eastern Anatolia region Gumbel Probability weighted moments
Aegean region GEV Moments
Southeastern Anatolia region P3 Moments
Central Anatolia region GEV Probability weighted moments
Black sea region LN3 Probability weighted moments
Marmara region P3 Moments
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position information. The fitness value of each particle is 
determined with the help of the position information fit-
ness function. The Pbest value is updated by comparing the 
determined fitness value with the Pbest value, which is the 
best fitness value obtained by the particle so far. The Gbest 
value is updated by comparing the best fitness value that the 
particle has so far with the best fitness value that the swarm 
has achieved so far (Başakın et al. 2021). Detailed informa-
tion on the subject and hybrid applications can be found in 
(Elbaz et al. 2020; Shaban et al. 2021).

Optimization with genetic algorithms (GA)

Genetic algorithms are inspired by Darwin’s theory of evolu-
tion (Karahan et al. 2008). The solution of any problem with 
a genetic algorithm is done by virtually evolving the prob-
lem. GAs have been widely used in engineering problems 
after the books of Goldberg (1989), Gen and Cheng (1997), 
and Gen et al. (2008).

One of the main features of GAs is to change the popula-
tion represented by chromosomes by using some operators. 
Chromosomes can be represented by chains of characters 
of a given length l. Each chromosome represents a suit-
able solution to the problem. Chromosomes are made up of 
chains of symbols, and each symbol is called a bit (digit). 
Chromosomes are formed by arranging each bit in order of 
which parameter it represents. For example, if chains are cre-
ated in the binary number system, each chain takes the value 
0 and 1. The connection between the GA and the problem is 
provided by the objective function. The objective function 
allows the chromosomes to be converted to real numbers. If 
the objective function is maximized, a large objective func-
tion value indicates that the solution represented by this 
chromosome is better than the other chromosomes.

GAs are a sequential generative method. GAs use three 
basic parameters: reproduction, crossover, and mutation. 
Each generation made in the GA process creates a new 
society from the existing society. For example, let the initial 
population size be (pr). Each (pr) individual is assigned an 
integer. This assignment can be arbitrary or deterministic. 
The reproduction process selects the most suitable individu-
als from the existing society based on the objective function 
and using selection operators, for example, roulette wheel or 
tournament (Bell 1969). The reproduction operator selects 
the best individuals from the current generation to pass them 
on to the next generation. After completing this operator 
operation, crossover and mutation operators come into play 
and make other manipulations in the society in line with 
the given crossover (pc) and mutation (pm) probabilities. 
Detailed information on the subject and hybrid applications 
can be found in (Goldberg 1989; Goldberg and Deb 1991; 
Karahan et al. 2008; Elbaz et al. 2019; Shaban et al. 2021; 
Başakın et al. 2021).

Multi‑gene genetic programming (MGGP)

The initial population achievement is judged on training data 
based on the objective function minimization to obtain a better 
solution using the MGGP approach. The most common objec-
tive function is the root mean squared error.

MGGP is evolved from genetic programming (GP), which 
is a mathematical model that is used to further empirical math-
ematical modeling. MGGP is made up of a weighted number 
of GP trees created by combining set genes and regression 
genes which employs the least squares approach for coeffi-
cient estimation. The MGGP estimates the output value based 
on the problem’s input variables (Eray et al. 2018). The user 
specifies the maximum number of genes (G) and maximum 
gen depth (D) to gain control over this model complexity. The 
size and quantity of models to be evaluated in the global space 
are influenced by the G and D parameters. As a result, there 
exist ideal G and D values that result in an easily portable 
model (Citakoglu et al. 2020; Citakoglu 2021). In MGGP, the 
starting population is created by randomly selecting different 
genes from people that already exist in GP trees. Genes are 
inserted or removed by the crossover operator during MGGP 
execution, which is defined as a two-point high-level crossover 
that facilitates gene exchange across individuals. Each parent’s 
gene is chosen at random. The comprising tree is then swapped 
with parent trees using the normal subtree crossover operator 
(Gandomi and Alavi 2012; Eray et al. 2018). The user deter-
mines the probability of the crossover operator. The steps of 
the MGGP algorithm are as follows:

Step 1: Identify the issue.
Step 2: Initialize the settings.
Step 3: Using the least square method, construct a model.
Step 4: Examine the models’ performance.
Step 5: Create a new population using genetic operators.
Step 6: Examine individual performance in the new popu-
lation.
Step 7: If termination conditions are provided, complete the 
actions. If not, proceed to step 5.

Detailed information about MGGP was obtained from 
(Searson 2009; Searson et al. 2010).

Empirical equations

In this study, Lopcu (2007), Karahan et al. (2008), Yavuz 
(2018), and Başakın et al. (2021) suggested empirical con-
nections were used. The relations of the intensity value are as 
shown in Eqs. 3–13:

(3)i =

(
a ⋅ Tb

)

(t + c)d
,
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Here, i stands for the standard rainfall intensity (mm/
minute); T stands for the frequency (years); t stands for the 
rainfall duration (min); and a, b, c, d, e, and f stands for the 
coefficients in these equations.

Performance metrics

The accuracy of the models proposed in this research was 
evaluated using widely known performance metrics (Voy-
ant et al. 2017). MAE, MARE, RMSE, and R2 were used in 
model evaluations (Eqs. 14–17). Low MAE, MARE, and 
RMSE values, as well as R2 values near 1 suggest accurate 
and dependable estimations.

(4)i =

(
a ⋅ Tb

)

tc
,

(5)i =

(
a ⋅ Tb

)

(tc + d)
,

(6)i =
(a + b ⋅ lnT)

tc
,

(7)i =
(a + b ⋅ lnT)

(tc + d)
,

(8)i =
(a + b ⋅ lnT)

(t + c)d
,

(9)i =
(a + b ⋅ [ln(lnT)])

(t + c)d
,

(10)i =
(a + b ⋅ [ln(lnT)])

tc
,

(11)i =
(a + b ⋅ [ln(lnT)])

(tc + d)
,

(12)i =
(a + b ⋅ [ln(T)] + c.

[
ln (T)2

]
)

(d + e ⋅ [ln(t)] + f .
[
ln (t)2

]
)
,

(13)i =

(
a.Tb

)

(c + td)e
.

(14)MAE =
1

n

n∑

i=1

|||
ipredicted − imeasured

|||
,

where imeasured is rainfall intensity variables measured by 
MGM; ipredicted is rainfall intensity variables predicted by 
approaches; imeasured is average of rainfall intensity variables; 
and n is amount of data. In this study, scatter plots, Taylor 
diagram was used to compare approaches. These diagrams 
graphically summarize how close the models are to the 
observations (Taylor 2001; Legouhy 2021; Uncuoğlu et al. 
2021; Demir 2022).

Applications and results

In the study, firstly, the empirical equation parameters were 
optimized by the PSO method for the calculation of precipi-
tation intensity values. The optimization process was car-
ried out by rearranging the codes in the Licensed MATLAB 
package program and library (MATLAB 2022a). There are 
a total of 6 coefficients (a, b, c, d, e, and f) that need to 
be optimized in the empirical equation. To perform inten-
sity–duration–frequency analysis, firstly, frequency analy-
sis of the largest precipitation values should be done for 
each station one by one. In this study, the largest possible 
precipitation values, which are suitable for the selected dis-
tribution, are used in 2, 5, 10, 25, 50, 100, 200, 500, 1000, 
2000, 5000, and 1000 years. These values are named the 
measured precipitation value and represent the actual pre-
cipitation intensity values of the station. Obtained precipita-
tion intensity values are introduced to the methods as output, 
precipitation duration, and precipitation frequency as inputs. 
Then, coefficients for 11 empirical equations under the title 
of empirical equations were introduced to the models and the 
models were asked to optimize these coefficients. During the 
optimization process, the RMSE was used as the objective 
function (Eq. 16). The values that minimize the objective 
function are calculated by the PSO algorithm. During the 
calculation process, inspired by Başakın et al. (2021), the 
algorithm was started by taking the population size value 
of 100 and the inertia value of 0.9 acceleration coefficients 
c1 and c2 “2” belonging to the PSO. The coefficients and 

(15)MARE = 100
1

n

n∑

i=1

|||
ipredicted − imeasured

|||
SRpredicted

,

(16)RMSE =
1

n

n∑

i=1

√(
ipredicted − imeasured

)2
,

(17)

R2 =

∑n

i=1
(iimeasured − iimeasured)

2.(iipredicted − ipredicted )
2

∑n

i=1

�
iimeasured − iimeasured

�2

.
∑n

i=1

�
iipredicted − ipredicted

�2
,
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performance metrics obtained for the regions are given in 
Table 2. Bold numbers in Table 2 show the equation coef-
ficients of the lowest MARE performance criterion.

In the second phase of the present study, obtaining the 
optimum equation coefficients with the GA method was 

carried out using the MATLAB library (MATLAB 2022b). 
At the stage of creating GA estimation models, the popu-
lation size was chosen as 100, the number of generations 
was 1000, and the StallGenLimit was 100. The RMSE 
was employed as the objective function during the GA 

Table 2  PSO optimized coefficients and performance criteria

Region Equation a b c d e f RMSE MAE MARE R2

Mediterranean region 1 249.110 0.229 1.194 0.636 25.507 13.161 22.246 0.943
2 220.468 0.230 0.615 26.561 13.306 22.297 0.943
3 300.197 0.227 0.664 0.912 25.100 13.073 22.230 0.944
4 74.003 156.890 0.616 17.751 10.315 21.892 0.972
5 105.358 188.343 0.648 0.748 16.708 10.114 21.778 0.973
6 95.768 172.151 1.476 0.635 16.725 10.138 21.795 0.973
7 356.785 444.523 0.816 0.685 28.123 16.604 30.137 0.935
8 332.887 400.815 0.671 28.230 16.773 30.194 0.932
9 376.682 468.864 0.693 0.473 28.154 16.614 30.137 0.935
10 17.007 4.558 1.423 1.000 − 0.778 − 0.218 28.629 14.782 23.933 0.931
11 280.788 0.227 1.201 0.815 0.804 25.082 13.064 22.237 0.944

Eastern Anatolia region 1 277.329 0.147 1.602 0.756 10.470 4.276 16.895 0.963
2 230.852 0.146 0.723 9.596 4.323 17.077 0.966
3 264.546 0.147 0.748 0.521 9.960 4.257 16.919 0.965
4 147.290 65.159 0.702 9.605 3.496 14.783 0.972
5 152.524 68.824 0.710 0.166 9.870 3.496 14.756 0.971
6 150.861 68.145 0.356 0.709 9.963 3.505 14.753 0.971
7 274.701 194.918 1.084 0.740 14.639 5.998 19.019 0.940
8 244.448 169.815 0.719 13.950 5.981 19.112 0.941
9 286.835 203.319 0.747 0.648 14.679 6.014 19.012 0.940
10 7.684 3.596 − 0.015 0.775 − 0.677 − 0.191 12.042 5.289 22.608 0.951
11 273.933 0.147 1.405 0.987 0.764 10.297 4.259 16.892 0.963

Aegean region 1 698.337 0.141 5.366 0.852 20.555 10.214 22.299 0.936
2 395.103 0.141 0.752 21.744 11.150 23.193 0.924
3 760.035 0.139 0.863 3.823 20.510 10.241 22.325 0.936
4 280.649 103.265 0.725 20.233 10.116 21.534 0.930
5 463.262 167.131 0.807 2.425 19.730 9.407 20.918 0.940
6 412.254 149.415 3.661 0.790 19.913 9.409 20.900 0.940
7 552.134 404.026 3.698 0.788 24.820 10.879 21.715 0.913
8 365.028 264.306 0.711 24.001 11.192 22.331 0.905
9 609.543 442.302 0.802 2.401 25.016 10.958 21.712 0.913
10 8.452 4.476 − 0.084 0.825 − 0.675 − 0.169 28.762 12.929 27.409 0.882
11 706.562 0.141 5.478 1.000 0.854 20.613 10.216 22.300 0.936

Southeastern Anatolia region 1 380.130 0.175 1.892 0.738 43.672 15.445 18.583 0.869
2 311.586 0.173 0.701 41.782 15.315 18.841 0.871
3 401.243 0.174 0.745 0.999 43.510 15.404 18.562 0.870
4 181.872 115.195 0.689 44.453 14.798 14.927 0.877
5 195.884 125.401 0.702 0.286 45.241 14.859 14.893 0.877
6 195.328 125.286 0.653 0.702 45.051 14.788 14.887 0.877
7 406.512 381.413 2.451 0.735 55.256 17.994 19.121 0.831
8 309.540 294.271 0.689 52.528 17.649 19.332 0.834
9 412.285 382.309 0.734 1.000 54.359 17.850 19.122 0.833
10 6.581 7.293 − 0.183 0.787 − 0.665 − 0.176 48.313 16.781 22.690 0.835
11 211.145 0.173 − 0.040 0.068 9.961 41.626 15.308 18.867 0.871
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optimization procedure. The coefficients and performance 
metrics obtained for the regions are given in Table 3. Bold 
numbers in Table 3 show the equation coefficients of the 
lowest MARE performance criterion.

Comparison of the best results obtained from Eqs. 1–11 
with the measured outputs through the use of MARE 
error criteria is provided in Table 4. As can be inferred 
from Table 4, with empirical equations, RMSE values 
varied between 6.2–81.02, 9.463‒114.177; MAE values 
between 0.78–18.86, 0.78‒19.85; MARE values between 
2.15–21.77, 2.17‒22.53; and the R2 values between 
0.86‒0.99, 0.86–0.99 for PSO and GA, respectively. The 

experimental equations for these error criteria are given 
in Table 5.

Comparing the empirical equations in Table 4, the gen-
erally best results were obtained with the equations where 
3 or 4 coefficients were optimized. Although the optimized 
equations differ regionally, the best results were generally 
observed in Eqs. 2, 3, 5, and 11. Regionally, the lowest 
RMSE errors are seen in the Eastern Anatolia Region and 
Marmara Region; the highest RMSE errors are seen in 
the Central Anatolia Region and Southeastern Anatolia 
Region.

Table 2  (continued)

Region Equation a b c d e f RMSE MAE MARE R2

Central Anatolia region 1 247.392 0.294 4.861 0.746 49.104 18.868 13.846 0.869

2 192.604 0.293 0.705 48.213 17.464 14.368 0.874

3 265.618 0.294 0.755 2.333 48.087 18.652 13.857 0.872

4 45.174 193.763 0.723 50.494 21.525 21.748 0.867

5 64.714 319.475 0.804 2.519 54.369 21.933 21.219 0.872

6 60.436 292.069 4.088 0.792 55.017 22.080 21.216 0.871

7 411.669 480.723 2.977 0.781 81.021 33.541 34.958 0.774

8 313.828 353.536 0.731 76.846 32.826 35.167 0.767

9 451.881 527.608 0.795 1.924 80.864 33.507 34.957 0.775

10 96.517 − 0.527 13.522 − 0.999 0.000 − 0.919 62.279 28.747 34.627 0.786

11 255.952 0.294 3.375 0.876 0.857 48.603 18.766 13.850 0.870
Black Sea region 1 311.864 0.228 0.964 0.680 26.836 11.444 16.741 0.959

2 281.637 0.229 0.663 30.229 11.956 16.858 0.957
3 320.633 0.227 0.683 0.418 26.916 11.385 16.744 0.959
4 115.546 185.859 0.674 – 19.009 9.208 15.741 0.974
5 138.345 230.983 0.709 0.736 17.198 8.965 15.601 0.977
6 132.632 218.216 1.438 0.702 17.096 9.009 15.598 0.977
7 529.690 606.276 4.620 0.725 37.832 17.755 25.794 0.920
8 341.903 389.423 0.656 34.724 18.125 26.202 0.920
9 606.211 697.307 0.743 2.456 36.772 17.509 25.774 0.922
10 15.835 10.347 0.797 1.272 − 0.986 − 0.260 27.590 13.533 19.361 0.940
11 318.609 0.227 0.690 0.837 0.816 26.731 11.403 16.742 0.959

Marmara region 1 696.688 0.138 5.870 0.797 9.371 4.650 9.453 0.984
2 396.971 0.139 0.708 17.016 7.128 11.770 0.971
3 782.600 0.138 0.814 3.760 9.303 4.642 9.426 0.984
4 276.378 117.808 0.711 16.008 6.269 8.717 0.980
5 518.121 200.861 0.801 3.255 6.200 2.915 5.841 0.993
6 463.234 179.457 5.180 0.785 6.221 2.938 5.859 0.993
7 609.929 546.833 5.021 0.796 10.414 5.433 10.816 0.982
8 390.437 322.905 0.714 15.304 7.483 12.643 0.966
9 706.085 620.882 0.815 3.430 10.479 5.451 10.797 0.982
10 10.426 6.756 − 0.194 0.802 − 0.674 − 0.179 13.335 7.981 20.994 0.969
11 756.662 0.137 4.611 0.885 0.914 9.311 4.637 9.436 0.984
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Table 3  GA optimized coefficients and performance criteria

Region Equation a b c d e f RMSE MAE MARE R2

Mediterranean region 1 292.901 0.222 1.000 0.661 27.213 13.595 22.539 0.949
2 413.898 0.196 0.711 40.665 16.986 25.595 0.957
3 458.558 0.226 0.731 2.979 – 25.777 13.513 22.531 0.937
4 91.434 87.521 0.541 36.115 19.180 27.168 0.976
5 51.035 84.490 0.525 − 0.925 20.676 11.647 23.565 0.963
6 17.333 85.563 − 1.000 0.601 27.079 16.549 29.181 0.964
7 332.756 85.561 − 1.000 0.602 63.155 34.648 44.384 0.854
8 216.964 92.694 0.537 72.645 38.514 43.756 0.899
9 493.179 89.555 0.675 − 0.551 53.417 31.386 45.352 0.820
10 32.980 0.681 2.831 0.998 −0.822 0.277 32.349 15.777 25.161 0.933
11 57.785 0.302 − 0.354 0.618 0.749 48.007 25.307 31.561 0.854

Eastern Anatolia region 1 238.793 0.148 0.609 0.731 10.061 4.295 16.971 0.965
2 264.190 0.139 0.745 9.611 4.605 17.537 0.966
3 438.717 0.145 0.837 3.137 11.959 4.690 17.428 0.955
4 161.970 64.028 0.704 9.478 3.581 14.948 0.971
5 242.769 83.000 0.765 1.000 10.513 3.841 15.784 0.967
6 174.370 72.457 0.998 0.724 10.448 3.588 14.885 0.970
7 204.438 85.322 0.263 0.653 24.692 10.252 23.887 0.919
8 200.903 91.427 0.656 23.350 9.682 23.005 0.924
9 167.573 90.458 0.641 − 0.880 16.007 7.231 20.989 0.927
10 103.302 0.919 2.567 0.431 − 0.999 0.895 17.496 10.124 33.026 0.906
11 52.402 0.201 − 0.997 0.739 0.698 26.597 13.210 31.887 0.929

Aegean region 1 413.796 0.141 0.480 0.759 20.838 10.886 22.987 0.928
2 400.958 0.142 0.755 21.985 11.156 23.196 0.924
3 658.534 0.143 0.843 2.862 20.122 10.321 22.357 0.936
4 278.085 97.893 0.717 20.128 10.080 21.586 0.931
5 302.341 98.392 0.719 0.363 20.475 9.898 21.554 0.935
6 295.142 91.259 0.599 0.713 21.142 10.117 21.682 0.934
7 321.635 83.437 − 0.980 0.644 38.434 18.635 29.761 0.856
8 385.299 90.625 0.672 38.666 18.602 29.824 0.856
9 482.507 83.947 0.705 − 0.188 34.899 17.462 30.920 0.833
10 139.352 0.966 3.965 0.383 − 1.000 0.896 35.014 20.412 39.240 0.820
11 223.348 0.160 − 0.593 0.915 0.722 24.212 12.983 25.789 0.925

Southeastern Anatolia region 1 327.843 0.175 0.619 0.711 42.567 15.322 18.706 0.871
2 355.085 0.168 0.722 39.973 15.242 19.103 0.871
3 590.057 0.175 0.809 3.243 46.047 16.045 18.807 0.862
4 188.546 82.658 0.651 54.142 17.907 17.092 0.871
5 205.806 87.914 0.663 − 0.115 49.942 16.122 16.305 0.870
6 212.562 86.368 − 0.235 0.662 50.612 16.308 16.683 0.869
7 265.724 89.900 − 0.999 0.605 73.583 28.947 31.013 0.779
8 177.426 93.747 0.557 82.084 32.813 30.033 0.808
9 399.418 87.297 0.660 − 0.359 67.291 26.818 33.931 0.748
10 116.272 0.791 4.870 0.379 − 0.901 0.773 50.629 24.059 34.325 0.807
11 100.357 0.213 − 0.148 0.690 0.789 68.522 28.251 29.409 0.846
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The MGGP technique was utilized to estimate intensity 
levels in the study’s final phase. The generalization abil-
ity of the equations developed with the MGGP approach 
is influenced by parameter selection. The function node set 
employed in this study is + , x, y, e, abs, sin, and log. The 
maximum number of generations and population size is 
300. In addition, the maximum number of genes and maxi-
mum gene depth range from 4 to 5, as inspired by Citako-
glu et al. (2020). Maximum number of genes (Gmaks) and 
maximum gene depth (Dmaks) determine the size of the 
search space and the solutions to be sought in this search 
space, and high values for population size and number of 

generations increase study duration. Different values for 
Gmaks and Dmaks were explored to discover the model 
with more accurate outcomes, and the best models were 
achieved when Dmaks was set to 4–5 and Gmaks was set to 
4–5. The fitness values were assessed using RMSE values, 
and the model with the lowest RMSE value was chosen as 
the best. As a termination condition, the maximum number 
of generations was chosen. To evaluate model performance, 
we used all of the error criteria listed in the “Error Criteria” 
section (Table 5). The equations generated for the estima-
tion of intensity with the use of T, and t data and MGGP are 
given Table 6.

Table 3  (continued)

Region Equation a b c d e f RMSE MAE MARE R2

Central Anatolia region 1 196.616 0.294 0.355 0.709 47.192 17.460 14.251 0.875

2 249.446 0.283 0.739 55.314 18.061 15.240 0.875

3 332.048 0.295 0.789 4.620 53.060 19.853 13.940 0.862

4 62.849 89.473 0.615 80.517 32.655 26.722 0.869

5 71.571 88.165 0.624 − 0.986 60.725 26.663 25.511 0.845

6 178.253 82.276 − 0.448 0.667 79.516 33.633 32.542 0.836

7 185.900 97.273 − 1.000 0.604 106.919 46.568 43.103 0.729

8 141.463 87.072 0.565 114.177 49.960 43.844 0.747

9 131.106 89.332 0.559 − 1.000 98.602 42.811 40.437 0.736

10 17.489 0.631 2.652 0.825 − 0.788 0.283 48.832 21.136 27.356 0.865

11 176.672 0.296 0.328 0.874 0.792 46.005 17.806 14.452 0.874
Black Sea region 1 305.621 0.228 0.771 0.676 27.160 11.463 16.749 0.959

2 380.825 0.198 0.695 28.154 11.632 18.265 0.966
3 462.743 0.227 0.738 2.280 24.168 11.774 17.172 0.955
4 119.232 96.643 0.573 40.360 19.951 22.416 0.976
5 71.821 85.400 0.545 − 0.997 22.454 11.872 18.539 0.961
6 211.311 89.090 − 0.986 0.600 33.918 17.410 23.816 0.960
7 281.764 88.918 − 0.989 0.557 73.329 36.635 40.113 0.850
8 298.885 89.457 0.565 76.804 38.104 40.808 0.849
9 241.743 80.553 0.540 − 1.000 59.953 31.254 38.417 0.835
10 27.993 0.762 2.010 0.902 − 0.757 0.231 29.420 13.533 21.390 0.954
11 156.623 0.253 − 0.970 0.915 0.630 28.541 14.214 19.141 0.940

Marmara region 1 606.459 0.139 4.486 0.776 9.463 4.713 9.588 0.984
2 397.397 0.139 0.708 16.988 7.123 11.770 0.971
3 660.936 0.146 0.793 3.234 10.183 5.262 9.878 0.981
4 289.153 88.684 0.678 9.871 5.525 10.981 0.983
5 272.509 87.709 0.680 − 0.234 12.021 6.130 10.565 0.978
6 309.389 94.434 0.333 0.694 9.546 5.373 10.017 0.984
7 306.078 85.885 − 0.985 0.610 31.490 16.566 25.085 0.927
8 413.294 92.790 0.651 29.097 15.412 25.301 0.920
9 447.823 76.690 0.660 − 0.441 26.046 14.586 26.881 0.894
10 133.912 0.589 3.798 0.198 − 0.665 0.728 31.156 18.694 34.633 0.853
11 159.528 0.193 − 0.103 0.741 0.816 23.049 13.127 21.798 0.943
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Comparison of the results obtained from MGGP method 
with the measured outputs through the use of MARE 
error criteria is provided in Table 5. As can be inferred 
from Table 5, with MGGP method, RMSE values varied 
between 5.561 and 42.56, MAE values between 3.09 and 
16.03, MARE values between 8.28 and 25.54, and the R2 
values between 0.88 and 0.99. The experimental equations 
for these error criteria are given in Table 6.

The results of the experimental equations and MGGP 
method are examined; in all regions, the MGGP method 
gave the lowest RMSE error values compared to other meth-
ods. The PSO method, on the other hand, gave very close 
results with the MGGP. The disadvantage of the MGGP 
method is that the equations obtained as a result of the model 
are more complex than the experimental equations.

The scatter plots of the best results by regions are pre-
sented in Fig. 3. In the scatterplot given in Fig. 3, it is seen 
that the values of the output variables obtained with, are 
distributed above the trend line despite small deviations. The 
output variables obtained in the time series plot presented in 
Fig. 3 coincide with the measured values.

In present study, MGGP approach, PSO optimization, and 
GA optimization were used for estimation of i variable. The 
method in which experimental equations are optimized with 
the MGGP approach was selected as the best model for esti-
mation of i since it had the least performance metrics values 
(RMSE, MAE, MARE).

Taylor diagram is used as another comparison criterion. 
In this graphical method, in which the closeness to the 

Table 4  Regional empirical 
equations

Region Equations

PSO GA

Mediterranean region i(5) =
(105.358+188.343⋅ln T)

(t0.648+0.748)
i(5) =

(51.035+84.490⋅ln T)

(t0.525+−0.925)
Eastern Anatolia region

i(2) =
(230.852⋅T0.146)

t0.723
i(4) =

(161.970+64.028⋅ln T)

t0.704

Aegean region i(5) =
(463.262+167.131⋅ln T)

(t0.807+2.425) i(3) =
(658.534⋅T0.143)

(t0.843+2.862)

Southeastern Anatolia region i(11) = 211.145.T0.173

∕
(

−0.040 + t0.068
)9.961 i(2) =

(355.085⋅T0.168)
t0.722

Central Anatolia region
i(3) =

(265.618⋅T0.294)

(t0.755+2.333)
i(11) = 176.672.T0.296

∕
(

0.328 + t0.874
)0.792

Black Sea region i(6) =
(132.632+218.216⋅ln T)

(t+1.438)0.702
i(5) =

(71.821+85.400⋅ln T)

(t0.545−0.997)

Marmara region i(5) =
(518.121+200.861⋅ln T)

(t0.801+3.255) i(1) =
(606.459⋅T0.139)
(t+4.486)0.776

Table 5  Performance criteria for MGGP

Region RMSE MAE MARE R2

Mediterranean region 14.927 9.066 23.909 0.9781
Eastern Anatolia region 8.531 3.942 16.555 0.9724
Aegean region 18.156 9.861 25.546 0.9422
Southeastern Anatolia region 36.746 14.770 19.325 0.8813
Central Anatolia region 42.563 16.031 22.210 0.8905
Black Sea region 16.150 8.520 19.891 0.9784
Marmara region 5.561 3.097 8.288 0.9942

Table 6  Regional equations obtained by MGGP

Region Equations

Mediterranean region
iMediterranean = 1.02 ⋅

�
��
�
T

t

��
�
− 188.53 ⋅ e(3.275−t) +

94.46⋅log (�T�)
√
�t�

+ 184.453

Eastern Anatolia region
iEastern Anatolia =

√
�t�

0.0119⋅t−0.0087
+

13.86⋅log (�T�)
√
�t�

+
log (�T�)

0.0112⋅t−0.0088
− 1.52

Aegean region iAegean = 1.763
log (�t�)

�T�
+

860.4

t+6.133
+ 74.50

log (�T�)
√
�t�

− 10.18

Southeastern Anatolia region iSoutheastern Anatolia =
log (�T�)

0.0031⋅t−0.006
+

36.27⋅log (�t�)+23.76⋅log (�T�)
√
�t�

− 7.48

Central Anatolia region
iCentral Anatolia = 2 ⋅ e−t ⋅ (2900 ⋅ t − 12188) +

log (|T|)

0.0017⋅t+0.0125
+ 5.7 ⋅

√
||
|
T

t

||
|
+ 2.75

Black Sea region iBlack Sea =
log (�T�)

0.005⋅t+0.016
+ 204.6

log (�t�)

T+t
+ 87.6

log (�T�)
√
�t�

− 4.35

Marmara region
iMarmara =

394.28⋅log (�T�)

t+10.23
+

209.99⋅
√
�t�

t−0.4849
− 144.56 ⋅

√
�t�

t⋅T
− 2.32
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Fig. 3  The scatter plots of the best results for regions
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observed values determines the best model, the RMSD 
error criterion and the correlations coefficient are used. 
The Taylor diagram prepared according to the regions is 
given in Fig. 4.

The closeness to the observed data in Taylor diagrams 
is expressed by the RMSD and the correlation coefficient. 
Closeness to the observed point indicates that the model 
is more accurate or better expresses the measured values 
(Citakoglu 2021; Demir 2022). In the Taylor diagrams of 
the best results, it is seen in many regions where PSO is 
superior to GA. But the most striking results were found 
in MGGP. MGGP points are very close to PSO and gave 
better results than PSO in all regions according to RMSD 
criterion. For this reason, Taylor diagrams adds a differ-
ent interpretation feature to the studies. As a result, the 
MGGP approach made estimations with less errors than 
the coefficients obtained with PSO, and GA and the equa-
tions obtained using these coefficients. Therefore, MGGP 
is superior to other methods. However, when the IDF rela-
tionship was plotted on a graph in Fig. 5, it was visually 
observed that the empirical equation in Table 6 obtained 
for Marmara Region was partially successful in represent-
ing the overall IDF relationship. In Fig. 5, it can be seen 
that it shows close agreement for all ranges of frequen-
cies. It gave unsuccessful results for 2−, 5−, 10-year fre-
quencies and annual frequencies such as 2000, 5000, and 
10,000, but remarkably successful results were observed 
for other frequencies. The overall result was that although 
the error values of the relevant models for the IDF rela-
tionship were low, even the best ones could not accurately 
represent the regionalized IDF relationship.

In addition to the traditional performance measurements, 
the Kruskal–Wallis (KW) test for best empirical equations 
and the MGGP technique were used at the end of the study. 
The KW test is a nonparametric alternative to the traditional 
one-way ANOVA. It compares data sets’ medians to see if 
the samples are from the same population (or, equivalently, 
different populations with the same distribution). The KW 
test calculates test statistics using rows of data rather than 
numerical values. The ranks are determined by sorting the 
data into groups from smallest to largest and then taking the 
numerical index of that order. The average rank of all asso-
ciated observations is equal to the rank of a linked observa-
tion. In KW test, the p value measures the significance of 
the Chi-square statistic, which replaces the F-statistic used in 
traditional one-way ANOVA. The KW test assumes that all 
samples come from the same continuous distribution, with 
the exception of possible differences in location due to group 
effects, and that all observations are mutually independent 
(Citakoglu 2021; Demir 2022; MATLAB 2022c). Table 7 
shows the results of the KW test. The empirical equations 
and the MGGP technique passed the KW test at the 95% sig-
nificance level, as shown in Table 7. The empirical equations 

and the MGGP technique both produce results from the 
same population.

Discussion

When many of the worldwide articles mentioned in the 
introduction are examined, three coefficients belonging to 
the i = c1×Tc2

tc3
 empirical equation, which is widely used in the 

literature, to the IDF relations obtained by point frequency 
analysis were determined with a single method.

Several articles on IDF equality have been prepared by 
researchers in Turkey. Alramlawi and Fistikoğlu (2022), Şen 
(2019), Karahan et al. (2007), and Karahan et al. (2008) 
performed frequency analysis on the extreme precipitation 
intensity data of a single meteorology station in Turkey. In 
these studies, the probability distribution and IDF relation-
ship determined for each meteorology station were primarily 
determined. Afterward, they developed point IDF equations 
by using only one optimization technique, the coefficients 
of only one of the empirical equals commonly used in the 
literature for each determined IDF relationship.

Anılan et al. (2022) performed frequency analysis for 
each of the stations in the Black Sea region one by one and 
showed that each of these stations fit different probability 
distributions. They optimized the coefficients of 9 empiri-
cal equations in the literature with the SPSS program to the 
IDF relations obtained as a result of the frequency analysis. 
They did not mention the optimization technique they used 
in the analysis, and they used a single optimization method 
like other studies for Turkey. The IDF equations obtained in 
this study are regional and it has not been checked whether 
the results represent the original IDF relations. Acar et al. 
(2008) applied frequency analysis to the extreme precipita-
tion data of İzmir (a station in the Aegean Region of Turkey) 
and estimated the precipitation intensity with artificial neural 
networks by using the precipitation duration and frequency 
as input data. This study is a machine learning based study 
using a single station data. Ouali and Cannon (2018) per-
formed regional frequency analysis for Canada and obtained 
an IDF relationship. In addition, they obtained a single IDF 
relationship for Canada by making separate Canonical cor-
relation analysis and nonlinear canonical correlation analy-
sis, which are used for multiple variables in their studies. 
Thus, they obtained three different IDF associations for 
Canada. For each IDF relationship, the rainfall duration and 
frequency were taken as input data and predicted rainfall 
intensity with quantile regression and quantile regression 
neural network. This study is regional and an artificial neu-
ral network-based study. Haktanir et al. (2016) performed 
regional frequency analysis using the L-moments method 
in their study. L-moments method produces a single IDF 
relationship using the weighted averages of the L-variation 
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Fig. 4  Taylor diagrams for approaches
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coefficient, L-skewness coefficient, and L-moment ratios of 
the stations in the region. Görkemli et al. (2022) developed 
several new equations using the ABCP method using the 
regional curves obtained in Haktanir et al. (2016) in their 
study. The difference of this study from Görkemli et al. 
(2022) is that it makes frequency analysis for each station 
separately and determines the probability distribution for 
each station separately. It has been taken into account that 
the structure of the extreme precipitation data at each station 
will be different and this difference will cause different prob-
ability distributions. For this reason, it is aimed to obtain 
regional IDF equations by combining the IDF equations 
determined by each point frequency analysis. For this pur-
pose, the coefficients of the 9 empirical equations used in the 
literature for the numerical determination of the IDF rela-
tionship were optimized with GA and PSO. In addition, new 
equations have been developed using the MGGP method, 
since it gives fast results for the IDF relationship by taking 
Görkemli et al. (2022) as an example. In addition, while only 
one region of Turkey is studied in the literature for Turkey, 
empirical equations for seven climate regions of Turkey have 
been optimized and new IDF equations have been developed 
in this study. It was investigated whether the IDF results 
obtained represent the original IDF relationships. One of the 
most important features that distinguishes the present study 
from other studies is the use of two different optimization 
techniques, which are widely used in the literature. By using 
two different optimization techniques, the study has been 
enriched and it has been possible to examine it from different 

Fig. 5  Graphical presentation of numerical values obtained by MGGP model with IDF relationship for Marmara Region

Table 7  The p values of the null hypothesis (H0) of the KW test at 95 
percent confidence level

Region Method P value Sig-
nificance 
level

H0*

Mediterranean region PSO 0.8946 0.05 Reject
GA 0.4499 0.05 Reject
MGGP 0.9570 0.05 Reject

Eastern Anatolia region PSO 0.5362 0.05 Reject
GA 0.5517 0.05 Reject
MGGP 0.8451 0.05 Reject

Aegean region PSO 0.2909 0.05 Reject
GA 0.4760 0.05 Reject
MGGP 0.7598 0.05 Reject

Southeastern Anatolia region PSO 0.5148 0.05 Reject
GA 0.4889 0.05 Reject
MGGP 0.8365 0.05 Reject

Central Anatolia region PSO 0.5091 0.05 Reject
GA 0.4648 0.05 Reject
MGGP 0.9132 0.05 Reject

Black Sea region PSO 0.1602 0.05 Reject
GA 0.3005 0.05 Reject
MGGP 0.8476 0.05 Reject

Marmara region PSO 0.9307 0.05 Reject
GA 0.9581 0.05 Reject
MGGP 0.7682 0.05 Reject
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angles in global minimums. In addition, a comparison of 
these two techniques was made.

Conclusions

IDF equations have a very important place in water manage-
ment and water structures design. In this study, the annual 
maximum precipitation data of 3 each meteorology stations 
belonging to 7 Regions of Turkey, which have semi-arid cli-
mates, were regionalized and examined. Frequency analysis 
was performed using probability distribution functions and 
parameter estimation methods in the literature. Precipita-
tion intensity values obtained with 11 different equations 
whose parameters were estimated by PSO and GA and 
MGGP method were compared with precipitation intensity 
values obtained by frequency analysis. According to the 
performance metrics values, the best i − t − T relationship 
was determined with the PSO method Eqs. 2, 3, 5, 6, 11 and 
the GA method Eqs. 2, 3, 4, 5, 11. According to the RMSE 
criterion, the most successful method is MGGP, followed 
by PSO and GA. Also, this result was supported Taylor dia-
grams and RMSD value. In KW suitability test performed 
for the methods, it was determined that the data came from 
a similar population in all regions and the methods gave suc-
cessful results. As a result, MGGP method is more complex 
and more successful, PSO method is simpler and successful, 
and GA is less successful than other methods.

The four main limitations of this study can be mentioned 
as follows:i) the usage of three meteorological stations data 
representing each region in Turkey, (ii) using data extending 
up to 35 years, (iii) using two input parameters (precipitation 
times and frequencies) in IDF estimation, (iv) two different 
nature-inspired optimization techniques and using a machine 
learning method.

This study is an effort to estimate IDF, which is of great 
importance in sewerage and infrastructure works, in a more 
realistic way. In future studies, the accuracy of the regional 
study can be increased by providing more station data from 
each geographic region. In addition, newer equations can be 
obtained by adding parameters such as latitude, longitude, 
and altitude with the MGGP method.
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