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Abstract
Hydrological processes forecasting is an essential step for better water management and sustainability. Among several

hydrological processes, lake water level (LWL) forecasting is one of the significant processes within a particular catch-

ment. The complexity of the LWL fluctuation is owing to the diversity of the influential parameters including climate,

hydrology and some other morphology. In this study, several versions of neurocomputing intelligence models are

developed for LWL fluctuation forecasting at five great lakes Lake Superior, Lake Michigan, Lake Huron, Lake Erie, and

Lake Ontario, located at the north of USA. The applied models are including M5-Tree, multivariate adaptive regression

spline (MARS) and least square support vector regression (LSSVR). The models are developed using several input

combinations that are configured based on the correlated lags in addition to the periodicity of time series. The sequential

influence of the lakes order is considered in the modeling development. Also, cross-station modeling where lag time series

of upstream lakes are used to forecast downstream LWL. Results are assessed using several statistical metrics and graphical

visualization. Overall, the results indicated that the applied forecasting models efficient and trustworthy. The component of

the periodicity time series enhances the forecasting performance. Cross-station modeling revealed an optimistic modeling

strategy for learning transfer modeling of using information of nearby site.

Keywords Lake water level � Neurocomputing models � Lead time influence � Cross stations modeling

1 Introduction

The better understanding of lake water level (LWL) fluc-

tuations can benefit for multiple applications of water

resources management and the ecosystem [1, 2]. The

changes in water level either for lakes, groundwater, or

other water bodies can have a highly impact on socio-

economic and environmental applications [3]. Naturally,

catchments or basins have multiple sources of water inputs

that might cause lakes water level rise and hence this

requires much attention by hydrologists and climatologists

to have more informative vision of the water mechanism

and attempting to set a programming technology for LWL

monitoring [4]. Worth to mention, on the other hand,

decline of LWL due to like for example climate change can

affect the lacustrine of the ecosystem [5, 6]. As a results,

the accurate prediction of LWL can be considered as an

essential element for the hydrological cycle understanding,

catchment water balance, hydraulic structure design,

groundwater level, contamination intrusion, flood control

and several others [7]. In addition, although models con-

taining hydrological and hydrometeorological variables

such as precipitation, temperature, and evaporation can be

found in the literature, it is economically more advanta-

geous to use a model that simulates level changes based on

historical level records [8, 9]. The motivation of the current

research is to develop a computation data intelligence

model with accurate prediction of LWL.

Based on the physical meaning, LWL fluctuation is

caused by several hydrological and climatological
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Fig. 1 Geographical location of the study area
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processes experienced in particular catchment of basin

[10]. Hence, the nature of this fluctuation is highly non-

linear and stochastic and not easily can be comprehended.

The literature evidenced the implications of several

methodologies and among several, the water balance in

which several parameters are implicated such as ground-

water drops, catchment rainfall and runoff, inlet and outlet

water discharge to the lake, water evaporation from the

lake and several other causally impacted on LWL. How-

ever, this methodology is associated with several limitation

such as time consume computationally, calculations errors,

and required huge amount of data [11]. Hence, alternative

methodologies for this purpose are highly recommended

for easy catchment simulation [12]. The development of

machine learning (ML) models for LWL forecasting and

modeling have been adopted over the literature by several

researchers [12]. For instance, support vector machine

(SVM) [13], artificial neural network (ANN) [14], adaptive

neuro-fuzzy inference system (ANFIS) [15], gene expres-

sion programming (GEP) [16], hybrid version of ANN

using nature inspired optimization algorithm [17], conju-

gated ANFIS and SVM with wavelet preprocessing time

series data [18], deep learning [19], minimax probability

machine regression [20], random forest (RF) [21], extreme

gradient boosting tree (EGBT) [22].

The discovery of new variant of ML models for fore-

casting LWL has been always the motive for researchers.

This is inspired from the fact, there is no single ML model

can be generalized as master for all types of LWL mod-

eling. This is due to the known statement every ML model

behave in a different way from one case to another. In

addition, LWL is differ from one catchment to another and

thus the stochasticity is totally varied. There are several

ML models newly explored on their application within

hydrological processes, among them, M5-Tree, multivari-

ate adaptive regression spline (MARS) and least square

support vector regression (LSSVR). They have been

applied successfully in diverse hydrology processes such as

river flow [23], rainfall [24], evaporation [25], drought

[26], sediment transport [27], groundwater level [28] and

several others [29].

The motivation of the current research was inspired

from recognized gap of the adopted literature. The main

research aims are (i) using of relatively new neurocom-

puting intelligence models (i.e., M5-Tree, MARS and

LSSVR) for LWL forecasting at five great lakes located at

USA, (ii) the models predictability performances were

tested using several input combinations that incorporate

lead time series data in addition to the periodicity of the

time series data, (iii) cross-stations modeling procedure

was investigated in this research for the purpose of using

upstream dataset to forecast downstream LWL. A com-

prehensive assessment and evaluation were conducted for

the initial research aim for the better understanding of the

feasibility of the adopted methodology.

The reminder of the article as follows: Sect. 2 explained

the case study and the utilized dataset. Sect. 3 reported the

adopted ML models. Sect. 4 exhibited the modeling

development procedure. Section 5 focused on the elabo-

ration of the model results and analysis. Discussion of the

obtained modeling results is revealed in Sect. 6. Finally,

the research conclusion presented in the last section of the

current article.

Fig. 2 Great lakes profile modified from (NOAA, 2021)
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Fig. 3 The time series of the great lakes
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2 Case study and data description

The case study selceted for this investigation knows as the

largest fresh lake surface water which is called as the Great

lake that consisted of six lakes (Lake Ontario, Lake Erie,

Lake St. Clair, Lake Michigan, Lake Huron and Lake

Superior), as well as their connected canals [30]. This lakes

cover 94,000 mi2 and contain an anticipated 6 quadrillion

gallons of water, accounting for nearly one-fifth of the

world’s fresh surface water supply and nine-tenths of the

United States’. The Great Lakes provide drinking water to

more than 40 million people in the United States and

Canada. More than 1.5 million jobs and $60 billion in

salaries are directly generated by the lakes each year. They

also house over 3,500 animal species and plant, some of

which are unique to the Great Lake area. The Great Lakes

provide more than $52 billion in annual revenue for the

region, thanks to world-class boating, hunting, and fishing

options [31] The geographical position of the study area is

given in Fig. 1.

The main characteristics of the lakes are as follows.

Lake Superior is the world’s largest freshwater lake, also

the deepest and coldest of the Great Lakes, and various

minerals such as copper, silver, gold, and nickel are mined

around the lake. Although the Michigan-Huron lakes are

separate lakes, the Mackinac Strait connects these two

lakes. Manitoulin Island, the world’s largest lake island, is

surrounded by Lake Huron. Lake St. Clair is part of the

Great Lakes system, and it connects Lake Huron (to the

north) with Lake Erie via the St. Clair River and the Detroit

River (to the south). Lake Erie is the southernmost located

lake, shallow, can freeze in winter, and is the most polluted

of the Great Lakes. Lake Ontario is the easternmost lake,

has the smallest surface area, and the surrounding land is

ideal for growing fruit [32]. The Great lakes profile is

shown in Fig. 2.

Many systems in this region rely on forecasting changes

in lake level. Flood control, reservoir management, water

infrastructure management, commerce, drinking water

distribution, coastal erosion, and transportation are just a

few of the issues. In this study, monthly lake levels pro-

vided by the US Army Corps of Engineers for the years

1918–2020, a period of 103 years, are compiled for Lakes

Superior, Huron-Michigan, St. Clair, Erie, and Ontario.

Because the Lakes Huron and Michigan are connected by

the Straits of Mackinac and have similar hydrologic char-

acteristics, they are often referred to as Lake Michigan-

Huron. All water levels (m) in this article are based on the

International Great Lakes Datum 1985 (IGLD). The

observed lake levels for Great Lakes are shown in Fig. 3. It

should be noted that the lake level data used is continuous

for all lakes and there is no data on missing monitoring

events during the study period.
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Fig. 4 Autocorrelation and

partial auto-correlation function

for the monthly lake levels
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Fig. 5 The flow chart of the

study
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Table 1 The statistical performance of the developed MARS model

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Lake Superior

RMSE M1 1995–2020 0.066 0.052 0.051 0.056

M2 1969–1995 0.064 0.043 0.042 0.050

M3 1943–1969 0.073 0.048 0.047 0.056

M4 1918–1943 0.064 0.044 0.042 0.050

Mean 0.067 0.047 0.046 0.053

MAE M1 1995–2020 0.053 0.040 0.039 0.044

M2 1969–1995 0.055 0.035 0.035 0.041

M3 1943–1969 0.061 0.038 0.037 0.045

M4 1918–1943 0.053 0.035 0.033 0.040

Mean 0.056 0.037 0.036 0.043

R2 M1 1995–2020 0.928 0.956 0.957 0.947

M2 1969–1995 0.853 0.937 0.937 0.909

M3 1943–1969 0.827 0.929 0.930 0.895

M4 1918–1943 0.891 0.950 0.955 0.932

Mean 0.875 0.943 0.945 0.921

Lake Michigan

RMSE M1 1995–2020 0.070 0.050 0.048 0.056

M2 1969–1995 0.066 0.048 0.047 0.054

M3 1943–1969 0.071 0.048 0.046 0.055

M4 1918–1943 0.070 0.046 0.044 0.053

Mean 0.069 0.048 0.046 0.054

MAE M1 1995–2020 0.056 0.040 0.038 0.045

M2 1969–1995 0.055 0.038 0.036 0.043

M3 1943–1969 0.058 0.037 0.035 0.043

M4 1918–1943 0.056 0.036 0.034 0.042

Mean 0.056 0.038 0.036 0.043

R2 M1 1995–2020 0.974 0.987 0.988 0.983

M2 1969–1995 0.941 0.970 0.971 0.961

M3 1943–1969 0.960 0.983 0.984 0.976

M4 1918–1943 0.960 0.983 0.984 0.976

Mean 0.959 0.981 0.982 0.974

Lake St. Clair

RMSE M1 1995–2020 0.101 0.096 0.092 0.096

M2 1969–1995 0.093 0.101 0.099 0.097

M3 1943–1969 0.130 0.124 0.125 0.126

M4 1918–1943 0.151 0.150 0.153 0.151

Mean 0.119 0.118 0.117 0.118

MAE M1 1995–2020 0.080 0.073 0.069 0.074

M2 1969–1995 0.069 0.069 0.067 0.069

M3 1943–1969 0.094 0.088 0.088 0.090

M4 1918–1943 0.111 0.109 0.111 0.110

Mean 0.089 0.085 0.084 0.086

R2 M1 1995–2020 0.923 0.929 0.937 0.929
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Table 1 (continued)

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

M2 1969–1995 0.842 0.822 0.843 0.836

M3 1943–1969 0.835 0.851 0.849 0.845

M4 1918–1943 0.784 0.785 0.780 0.783

Mean 0.846 0.847 0.852 0.848

Lake Erie

RMSE M1 1995–2020 0.105 0.085 0.078 0.089

M2 1969–1995 0.096 0.092 0.088 0.092

M3 1943–1969 0.101 0.079 0.079 0.086

M4 1918–1943 0.100 0.130 0.067 0.099

Mean 0.101 0.096 0.078 0.092

MAE M1 1995–2020 0.086 0.066 0.062 0.071

M2 1969–1995 0.077 0.073 0.069 0.073

M3 1943–1969 0.081 0.060 0.060 0.067

M4 1918–1943 0.078 0.097 0.050 0.075

Mean 0.080 0.074 0.060 0.072

R2 M1 1995–2020 0.894 0.930 0.942 0.922

M2 1969–1995 0.840 0.870 0.881 0.864

M3 1943–1969 0.868 0.921 0.921 0.903

M4 1918–1943 0.884 0.844 0.950 0.893

Mean 0.872 0.891 0.923 0.895

Lake Ontario

RMSE M1 1995–2020 0.142 0.098 0.098 0.113

M2 1969–1995 0.137 0.096 0.098 0.110

M3 1943–1969 0.128 0.091 0.089 0.103

M4 1918–1943 0.116 0.091 0.09 0.099

Mean 0.131 0.094 0.094 0.106

MAE M1 1995–2020 0.117 0.078 0.078 0.091

M2 1969–1995 0.111 0.076 0.077 0.088

M3 1943–1969 0.105 0.073 0.071 0.083

M4 1918–1943 0.089 0.068 0.068 0.075

Mean 0.106 0.074 0.074 0.084

R2 M1 1995–2020 0.770 0.896 0.895 0.854

M2 1969–1995 0.773 0.894 0.889 0.852

M3 1943–1969 0.871 0.936 0.939 0.915

M4 1918–1943 0.894 0.943 0.943 0.927

Mean 0.827 0.917 0.917 0.887
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Table 2 The statistical performance of the developed M5-Tree model

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Lake Superior

RMSE M1 1995–2020 0.066 0.051 0.056 0.058

M2 1969–1995 0.064 0.043 0.046 0.051

M3 1943–1969 0.073 0.049 0.049 0.057

M4 1918–1943 0.065 0.043 0.043 0.050

Mean 0.067 0.046 0.048 0.054

MAE M1 1995–2020 0.053 0.039 0.043 0.045

M2 1969–1995 0.055 0.034 0.035 0.042

M3 1943–1969 0.061 0.038 0.038 0.046

M4 1918–1943 0.054 0.033 0.034 0.040

Mean 0.056 0.036 0.038 0.043

R2 M1 1995–2020 0.929 0.958 0.946 0.945

M2 1969–1995 0.853 0.936 0.929 0.906

M3 1943–1969 0.827 0.925 0.926 0.893

M4 1918–1943 0.888 0.952 0.952 0.931

Mean 0.874 0.943 0.938 0.919

Lake Michigan

RMSE M1 1995–2020 0.074 0.050 0.045 0.056

M2 1969–1995 0.074 0.048 0.047 0.056

M3 1943–1969 0.071 0.052 0.048 0.057

M4 1918–1943 0.074 0.049 0.044 0.056

Mean 0.073 0.050 0.046 0.056

MAE M1 1995–2020 0.059 0.039 0.036 0.045

M2 1969–1995 0.059 0.038 0.036 0.045

M3 1943–1969 0.057 0.040 0.036 0.044

M4 1918–1943 0.059 0.038 0.034 0.044

Mean 0.059 0.039 0.036 0.044

R2 M1 1995–2020 0.971 0.987 0.989 0.982

M2 1969–1995 0.925 0.970 0.971 0.956

M3 1943–1969 0.961 0.979 0.982 0.974

M4 1918–1943 0.954 0.980 0.984 0.973

Mean 0.953 0.979 0.982 0.971

Lake St. Clair

RMSE M1 1995–2020 0.101 0.100 0.109 0.103

M2 1969–1995 0.093 0.103 0.106 0.100

M3 1943–1969 0.131 0.132 0.138 0.134

M4 1918–1943 0.146 0.156 0.157 0.153

Mean 0.118 0.123 0.127 0.123

MAE M1 1995–2020 0.080 0.076 0.080 0.078

M2 1969–1995 0.068 0.071 0.076 0.072

M3 1943–1969 0.093 0.094 0.095 0.094

M4 1918–1943 0.108 0.116 0.114 0.113

Mean 0.087 0.089 0.091 0.089

R2 M1 1995–2020 0.922 0.924 0.916 0.920
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Table 2 (continued)

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

M2 1969–1995 0.843 0.826 0.823 0.830

M3 1943–1969 0.833 0.835 0.821 0.830

M4 1918–1943 0.790 0.765 0.755 0.770

Mean 0.847 0.837 0.829 0.838

Lake Erie

RMSE M1 1995–2020 0.096 0.087 0.087 0.090

M2 1969–1995 0.092 0.085 0.097 0.092

M3 1943–1969 0.103 0.087 0.094 0.095

M4 1918–1943 0.100 0.097 0.095 0.097

Mean 0.098 0.089 0.093 0.094

MAE M1 1995–2020 0.081 0.068 0.067 0.072

M2 1969–1995 0.075 0.067 0.075 0.072

M3 1943–1969 0.083 0.068 0.073 0.075

M4 1918–1943 0.078 0.075 0.073 0.075

Mean 0.079 0.070 0.072 0.074

R2 M1 1995–2020 0.909 0.927 0.928 0.921

M2 1969–1995 0.850 0.890 0.863 0.868

M3 1943–1969 0.861 0.906 0.892 0.886

M4 1918–1943 0.884 0.905 0.909 0.900

Mean 0.876 0.907 0.898 0.894

Lake Ontario

RMSE M1 1995–2020 0.146 0.108 0.109 0.121

M2 1969–1995 0.136 0.108 0.115 0.119

M3 1943–1969 0.135 0.098 0.113 0.115

M4 1918–1943 0.118 0.098 0.102 0.106

Mean 0.134 0.103 0.110 0.115

MAE M1 1995–2020 0.119 0.084 0.085 0.096

M2 1969–1995 0.111 0.083 0.088 0.094

M3 1943–1969 0.108 0.077 0.085 0.090

M4 1918–1943 0.090 0.073 0.077 0.080

Mean 0.107 0.079 0.084 0.090

R2 M1 1995–2020 0.757 0.873 0.871 0.834

M2 1969–1995 0.776 0.877 0.852 0.835

M3 1943–1969 0.858 0.929 0.904 0.897

M4 1918–1943 0.887 0.933 0.925 0.915

Mean 0.820 0.903 0.888 0.870
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Table 3 The statistical performance of the developed LSSVR model

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Lake Superior

RMSE M1 1995–2020 0.066 0.050 0.048 0.054

M2 1969–1995 0.064 0.042 0.042 0.049

M3 1943–1969 0.073 0.049 0.045 0.056

M4 1918–1943 0.064 0.042 0.040 0.049

Mean 0.067 0.046 0.044 0.052

MAE M1 1995–2020 0.053 0.038 0.037 0.043

M2 1969–1995 0.055 0.034 0.034 0.041

M3 1943–1969 0.061 0.039 0.036 0.045

M4 1918–1943 0.053 0.034 0.032 0.040

Mean 0.056 0.036 0.035 0.042

R2 M1 1995–2020 0.929 0.963 0.964 0.952

M2 1969–1995 0.853 0.939 0.939 0.910

M3 1943–1969 0.827 0.926 0.935 0.896

M4 1918–1943 0.891 0.954 0.958 0.934

Mean 0.875 0.945 0.949 0.923

Lake Michigan

RMSE M1 1995–2020 0.070 0.048 0.046 0.054

M2 1969–1995 0.066 0.048 0.046 0.053

M3 1943–1969 0.069 0.047 0.045 0.054

M4 1918–1943 0.068 0.045 0.043 0.052

Mean 0.068 0.047 0.045 0.053

MAE M1 1995–2020 0.056 0.038 0.036 0.044

M2 1969–1995 0.054 0.038 0.036 0.043

M3 1943–1969 0.055 0.037 0.035 0.042

M4 1918–1943 0.055 0.036 0.034 0.042

Mean 0.055 0.037 0.035 0.043

R2 M1 1995–2020 0.974 0.988 0.989 0.984

M2 1969–1995 0.941 0.971 0.973 0.962

M3 1943–1969 0.963 0.983 0.984 0.976

M4 1918–1943 0.962 0.983 0.985 0.977

Mean 0.960 0.981 0.983 0.975

Lake St. Clair

RMSE M1 1995–2020 0.100 0.090 0.092 0.094

M2 1969–1995 0.092 0.094 0.094 0.093

M3 1943–1969 0.130 0.121 0.118 0.123

M4 1918–1943 0.144 0.139 0.135 0.140

Mean 0.117 0.111 0.110 0.112

MAE M1 1995–2020 0.079 0.068 0.068 0.072

M2 1969–1995 0.068 0.068 0.067 0.068

M3 1943–1969 0.093 0.085 0.082 0.087

M4 1918–1943 0.107 0.100 0.097 0.101

Mean 0.087 0.080 0.079 0.082

R2 M1 1995–2020 0.922 0.939 0.936 0.932
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Table 3 (continued)

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

M2 1969–1995 0.841 0.841 0.847 0.843

M3 1943–1969 0.835 0.858 0.865 0.853

M4 1918–1943 0.797 0.821 0.831 0.816

Mean 0.849 0.865 0.870 0.861

Lake Erie

RMSE M1 1995–2020 0.097 0.076 0.076 0.083

M2 1969–1995 0.091 0.081 0.081 0.085

M3 1943–1969 0.100 0.077 0.076 0.084

M4 1918–1943 0.101 0.086 0.084 0.090

Mean 0.097 0.080 0.079 0.085

MAE M1 1995–2020 0.081 0.060 0.060 0.067

M2 1969–1995 0.074 0.066 0.066 0.069

M3 1943–1969 0.080 0.059 0.058 0.066

M4 1918–1943 0.078 0.065 0.063 0.069

Mean 0.078 0.062 0.062 0.067

R2 M1 1995–2020 0.909 0.944 0.944 0.932

M2 1969–1995 0.850 0.891 0.893 0.878

M3 1943–1969 0.868 0.925 0.927 0.907

M4 1918–1943 0.884 0.926 0.929 0.913

Mean 0.878 0.922 0.923 0.907

Lake Ontario

RMSE M1 1995–2020 0.142 0.092 0.093 0.109

M2 1969–1995 0.136 0.089 0.090 0.105

M3 1943–1969 0.128 0.088 0.086 0.101

M4 1918–1943 0.114 0.088 0.085 0.096

Mean 0.130 0.089 0.089 0.103

MAE M1 1995–2020 0.117 0.074 0.074 0.088

M2 1969–1995 0.111 0.071 0.070 0.084

M3 1943–1969 0.105 0.070 0.068 0.081

M4 1918–1943 0.087 0.066 0.064 0.072

Mean 0.105 0.070 0.069 0.081

R2 M1 1995–2020 0.770 0.907 0.905 0.860

M2 1969–1995 0.776 0.908 0.906 0.863

M3 1943–1969 0.871 0.942 0.945 0.919

M4 1918–1943 0.895 0.948 0.951 0.931

Mean 0.828 0.926 0.927 0.894
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Table 4 The statistical performance of the developed P-LSSVR model

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Lake Superior

RMSE M1 1995–2020 0.039 0.037 0.037 0.038

M2 1969–1995 0.036 0.034 0.034 0.035

M3 1943–1969 0.038 0.035 0.035 0.036

M4 1918–1943 0.034 0.032 0.032 0.033

Mean 0.037 0.034 0.034 0.035

MAE M1 1995–2020 0.029 0.028 0.028 0.028

M2 1969–1995 0.028 0.026 0.027 0.027

M3 1943–1969 0.028 0.027 0.027 0.027

M4 1918–1943 0.027 0.025 0.025 0.025

Mean 0.028 0.026 0.027 0.027

R2 M1 1995–2020 0.975 0.978 0.977 0.977

M2 1969–1995 0.953 0.960 0.959 0.957

M3 1943–1969 0.954 0.960 0.961 0.958

M4 1918–1943 0.969 0.974 0.974 0.972

Mean 0.963 0.968 0.968 0.966

Lake Michigan

RMSE M1 1995–2020 0.042 0.036 0.036 0.038

M2 1969–1995 0.041 0.036 0.037 0.038

M3 1943–1969 0.042 0.035 0.036 0.038

M4 1918–1943 0.038 0.034 0.034 0.035

Mean 0.041 0.035 0.036 0.037

MAE M1 1995–2020 0.034 0.029 0.030 0.031

M2 1969–1995 0.031 0.028 0.029 0.029

M3 1943–1969 0.033 0.028 0.028 0.030

M4 1918–1943 0.030 0.026 0.027 0.028

Mean 0.032 0.028 0.028 0.030

R2 M1 1995–2020 0.991 0.993 0.993 0.992

M2 1969–1995 0.977 0.982 0.981 0.980

M3 1943–1969 0.986 0.990 0.990 0.989

M4 1918–1943 0.988 0.990 0.991 0.990

Mean 0.985 0.989 0.989 0.988

Lake St. Clair

RMSE M1 1995–2020 0.076 0.078 0.077 0.077

M2 1969–1995 0.081 0.079 0.079 0.080

M3 1943–1969 0.095 0.094 0.091 0.093

M4 1918–1943 0.101 0.104 0.101 0.102

Mean 0.088 0.089 0.087 0.088

MAE M1 1995–2020 0.056 0.058 0.058 0.057

M2 1969–1995 0.055 0.055 0.055 0.055

M3 1943–1969 0.062 0.063 0.059 0.061

M4 1918–1943 0.069 0.071 0.070 0.070

Mean 0.061 0.062 0.060 0.061
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Table 4 (continued)

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

R2 M1 1995–2020 0.955 0.953 0.954 0.954

M2 1969–1995 0.879 0.890 0.885 0.885

M3 1943–1969 0.911 0.912 0.920 0.914

M4 1918–1943 0.898 0.893 0.896 0.895

Mean 0.911 0.912 0.914 0.912

Lake Erie

RMSE M1 1995–2020 0.064 0.061 0.061 0.062

M2 1969–1995 0.065 0.065 0.064 0.065

M3 1943–1969 0.063 0.060 0.060 0.061

M4 1918–1943 0.068 0.064 0.064 0.065

Mean 0.065 0.063 0.062 0.063

MAE M1 1995–2020 0.049 0.047 0.047 0.048

M2 1969–1995 0.050 0.050 0.050 0.050

M3 1943–1969 0.048 0.045 0.045 0.046

M4 1918–1943 0.050 0.047 0.047 0.048

Mean 0.049 0.047 0.047 0.048

R2 M1 1995–2020 0.960 0.963 0.963 0.962

M2 1969–1995 0.926 0.925 0.927 0.926

M3 1943–1969 0.948 0.953 0.953 0.951

M4 1918–1943 0.947 0.953 0.953 0.951

Mean 0.945 0.949 0.949 0.948

Lake Ontario

RMSE M1 1995–2020 0.090 0.080 0.079 0.083

M2 1969–1995 0.079 0.072 0.073 0.075

M3 1943–1969 0.085 0.074 0.074 0.078

M4 1918–1943 0.077 0.069 0.068 0.071

Mean 0.083 0.074 0.073 0.077

MAE M1 1995–2020 0.071 0.062 0.061 0.064

M2 1969–1995 0.062 0.056 0.057 0.058

M3 1943–1969 0.068 0.058 0.058 0.061

M4 1918–1943 0.058 0.053 0.051 0.054

Mean 0.065 0.057 0.057 0.060

R2 M1 1995–2020 0.906 0.927 0.928 0.921

M2 1969–1995 0.924 0.936 0.935 0.932

M3 1943–1969 0.944 0.957 0.957 0.953

M4 1918–1943 0.952 0.964 0.965 0.960

Mean 0.931 0.946 0.946 0.941
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Weather extremes and seasonal oscillations in general

have had an impact on the temporal variability of lake

levels, which characterize the annual hydrologic cycle

from winter lows to summer highs. The temporal fluctua-

tions shown in Fig. 3 indicate that the lake level series are

not stationary [32]. The characteristics of the Great Lakes

along with the statistics (period, maximum, mean, mini-

mum, skewness coefficient (Cs) standard deviation (Sx)) of

the water levels are given in Appendix 1. Pearson corre-

lation coefficients between lake water levels are shown in

Appendix 2.

The ideal model input scenario was determined using

auto-correlation and partial auto-correlation functions. The

auto-correlation functions and partial auto-correlation of

the lake levels for Great Lakes are given in Fig. 4. Lake

levels are significantly connected with previous month

levels, as shown in the graph. For the Great Lakes, the

partial autocorrelation function indicates a substantial

association until lag3 and then stays within the confidence

interval. Consequently, to simulate the Lt outflow, the input

combination considered in analyzing the lake level process

is Lt-1, Lt-2 and Lt-3.

3 Applied machine learning models

3.1 M5-Tree

Quinlan developed the M5-Tree technique in 1992 as a

novel regression method [33]. This model’s backbone is a

two-component decision tree. The technique describes the

connection between variables by applying the linear func-

tion to the last leaf nodes. The M5-Tree outperforms tra-

ditional tree models for data that are similar or related in

any way [34].

The M5-Tree tree consists of 2 stages. To create the

decision schema, the data is separated into subsets in the

first stage. To categorize clases, the class value’s standard

deviation attained at a node is employed. The error that

occurs when the elements acting on this node are tested is

used to calculate the predicted decrease [35, 36]. The fol-

lowing equation shows how the standard deviation reduc-

tion (SDR) is calculated.

SDR ¼ sdðTÞ �
X Tij j

Tj jsdðTiÞ ð1Þ

‘‘sd‘‘ stands for standard deviation in this formula. T is a

set of instances that act on the node. Ti represents subset

samples. These subset samples ’’i‘‘ belong to potential data

findings. [33].

3.2 MARS

The MARS model was proposed by Friedman [37]. MARS

is a model for forecasting nonlinear numeric outputs that

are continuous. There are two elements to the MARS

algorithm: forward and backward steps. The forward step

method is used to pick a collection of relevant input vari-

ables [38]. It removes extraneous variables in the pre-se-

lected collection using the backward step method. The

following fundamental equations are used to draw a func-

tion from variable X (input) to variable Y (output). The

new Y values are obtained using either the two base

functions defined at the deviation point on the input range,

or both variable values. [39].

Y ¼ maxð0;X � cÞ ð2Þ
Y ¼ maxð0; c� xÞ ð3Þ

The lower limit (threshold) value is denoted by c. In

management and planning systems, time series data, and a

variety of other disciplines, the MARS model is widely

utilized [40–43].

3.3 LSSVR

Suykens and Vandewalle developed the LSSVR model in

1999 as an extension of the Support Vector Regression

(SVR) [44]. It is used to find the best function between the

input (X) and output (Y) by statistically comparing current

water levels to water levels in previous time series [23]. It

achieves this procedure using a multidimensional feature

space and a nonlinear relationship function. The regression

function can be expressed in the following way.

y xð Þ ¼ w1u xð Þ þ b ð4Þ

Here, w is the coefficient vector, y is the output value,

x is the input paramters, b is the bias term [44].
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Fig. 6 Scatter plots of the observed and predicted lake level values during testing phase, produced by models for the great lakes; a worst b best
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4 Modeling development

The effectiveness of the proposed neurocomputing intelli-

gence approaches was investigated using data on actual

LWLs obtained from authorized official organizations. The

efficacy of the models in predicting the lake level for one

month ahead was tested in the first part of this study. The

influence of the periodical component of time series dataset

on the forecasting performance was also inspected. The

applicability of the data-driven prediction for the lake

levels is investigated using time series data from the

upstream lake station. Various input combinations based on

present and preceding lake water levels were used to model

the forecast. In other words, Lt gives the level of the lake at

time ‘‘t’’, and the input variables are: Lt-1 (i), Lt-1, Lt-2 (ii),

Lt-1, Lt-2 and Lt-3 (iii).

To obtain the most successful model formulation, LWL

were split into four divisions (training and testing) for the

Great lakes. Three data splits were utilized to initiate the

modeling development on the training phase for both

forecasting and cross-stations predicting. Whereas, the

fourth data division was used to test the applied models. In

all applications, the test dataset was varied; as a result, four

different scenarios were studied.

MARS, M5-Tree and LSSVR methods were used for

modeling, and Taylor and Violin diagrams were used to

evaluate the results. The LSSVR model was created using

open-source software [44]. For sigma and gamma values,

different numbers varying from 1 to 100 in increments of 1

were tried, the parameters giving the lowest RMSE value

were accepted as the best model parameter, and the RBF

kernel was used in the LSSVR model. There are no control

parameters in the M5-Tree and MARS models. These

methods were also implemented using open-source soft-

ware [45]. For all presented stations, lake-level data series

were split into four training/testing divisions to achieve the

best effective model. Three divisions of the data were used

to train the models for both forecasting and predicting,

while the fourth was used to validate (test) the model’s

network [22]. The testing data phase was changed in all

applications; therefore, four different scenarios were

investigated. For the Taylor and the Violin diagrams, an

open-source MATLAB code [46] and [47] was used,

respectively. The flow chart of the study is given in Fig. 5.

Evaluating hydrological applications, quantitative indi-

cators are frequently used [48, 49]. According to Legates

and McCabe [50], ’’goodness-of-fit‘‘ e.g., coefficient of

determination (R2) and error performance criteria (such as

root mean square error (RMSE) and mean absolute error

(MAE)) should be used to evaluate predictive models in

hydrology (MAE). For each input combination, the sug-

gested models were evaluated in terms of R2, MAE and

RMSE. The linear correlation between estimated and

observed values is measured by R2, which runs from - 1 to

Fig. 6 continued

Neural Computing and Applications (2023) 35:303–343 319

123



1 [51]. Values of 1 and 0 imply an ideal match and no

statistical correlation, respectively. By squaring the errors,

the RMSE is utilized to estimate prediction precision,

resulting in a positive number. When the differences

between predictions and observations grow significant, thse

RMSE rises from zero for perfect predictions to huge

positive values. The MAE measures the average magnitude

of the errors in a set of predict, without considering their

direction. When R2, RMSE, and MAE are near to 1, 0, and

0, respectively, the best model forecasts are obtained [52].

The mathematical expression of the performance metrics

can be written as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðLe � LoÞ2
vuut ð5Þ

MAE ¼ 1

N

XN

i¼1

Le � Loj j ð6Þ

R2 ¼ N �
P

Lo � Leð Þ �
P

Loð Þ �
P

Leð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �

P
L2o �

P
Leð Þ2

h i
� N �

P
L2e �

P
Leð Þ2

h ir

0

BB@

1

CCA

2

ð7Þ

Fig. 7 Violin diagram statistical

parameters
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Table 5 Comparison of the LSSVR, MARS, M5-Tree models in predicting monthly lake levels of the Michigan Station by using the data of

Superior station

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

LSSVR RMSE M1 1995–2020 0.249 0.247 0.238 0.245

M2 1969–1995 0.381 0.381 0.377 0.379

M3 1943–1969 0.320 0.323 0.324 0.323

M4 1918–1943 0.424 0.428 0.430 0.427

Mean 0.343 0.345 0.343 0.344

MAE M1 1995–2020 0.203 0.201 0.193 0.199

M2 1969–1995 0.344 0.344 0.342 0.343

M3 1943–1969 0.257 0.261 0.263 0.260

M4 1918–1943 0.342 0.346 0.348 0.345

Mean 0.287 0.288 0.286 0.287

R2 M1 1995–2020 0.754 0.724 0.737 0.739

M2 1969–1995 0.620 0.623 0.640 0.628

M3 1943–1969 0.264 0.256 0.258 0.260

M4 1918–1943 0.082 0.080 0.075 0.079

Mean 0.430 0.421 0.428 0.426

MARS RMSE M1 1995–2020 0.254 0.254 0.250 0.253

M2 1969–1995 0.383 0.383 0.381 0.382

M3 1943–1969 0.328 0.324 0.326 0.326

M4 1918–1943 0.434 0.432 0.435 0.433

Mean 0.350 0.348 0.348 0.349

MAE M1 1995–2020 0.209 0.210 0.205 0.208

M2 1969–1995 0.348 0.348 0.347 0.347

M3 1943–1969 0.263 0.261 0.264 0.263

M4 1918–1943 0.351 0.351 0.354 0.352

Mean 0.293 0.292 0.292 0.293

R2 M1 1995–2020 0.751 0.752 0.752 0.751

M2 1969–1995 0.627 0.631 0.636 0.631

M3 1943–1969 0.258 0.264 0.260 0.260

M4 1918–1943 0.074 0.085 0.069 0.076

Mean 0.427 0.433 0.429 0.430

M5-Tree RMSE M1 1995–2020 0.249 0.260 0.279 0.263

M2 1969–1995 0.381 0.396 0.395 0.391

M3 1943–1969 0.334 0.348 0.370 0.351

M4 1918–1943 0.441 0.445 0.462 0.450

Mean 0.352 0.363 0.376 0.364

MAE M1 1995–2020 0.203 0.217 0.227 0.216

M2 1969–1995 0.346 0.347 0.342 0.345

M3 1943–1969 0.266 0.278 0.294 0.279

M4 1918–1943 0.362 0.369 0.385 0.372

Mean 0.294 0.303 0.312 0.303

R2 M1 1995–2020 0.738 0.685 0.599 0.674

M2 1969–1995 0.622 0.456 0.437 0.505

M3 1943–1969 0.244 0.216 0.150 0.203

M4 1918–1943 0.063 0.057 0.044 0.054

Mean 0.417 0.354 0.307 0.359
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Here, N represent number of lake level data, Lo denotes

the actual (observed) lake level values, and Le denotes the

model output (estimation).

5 Applications results and analysis

5.1 Lake water level prediction using stand-
alone models

In this subsection, the prediction analysis for the adopted

three neurocomputing intelligence models (i.e., M5-Tree,

MARS, LSSVR) was reported for each investigated lake. It

is essential for the readers to comprehend the pattern of the

investigated LWL of the current research case study and

thus, Appendix 3 reports the statistical characteristics

including skewness, mean, min and max records, standard

deviation and the antecedent correlation values for each

investigated lake.

The first scenario was used to forecast monthly lake

levels, as described in the previous section. The input

combinations were cross validated through data time series

segmentation ‘‘four sets’’ in which the statistical analysis

was adopted for each independent data collection. As the

regularization of the learning function highly influencing

the learning process of the network, several regularizations

for the radial basis function kernel were tested to attain the

minimum RMSE indication by recalling the major

parameters of the LSSVR model. For the testing phase,

Appendix 4 revealed the best LSSVR model parameters for

each input combination. The prediction performance over

the testing phase is listed in Tables 1, 2 and 3 for the

developed predictions models (i.e., LSSVR, MARS and

M5) for all the inspected lakes stations (Lake Superior,

Lake Michigan, Lake Huron, Lake Erie, and Lake Ontario),

respectively. Apparently, the presented results showed a

significant discrepancy in the outcomes, which are the

values of the RMSE and MAE and theirs mean values.

Throughout the statistical performance reported in

Tables 1, 2 and 3, RMSE and MAE metrics indicated that

the third input combination provided the optimal fore-

casting value for one month ahead LWL using LSSVR and

MARS models. This can be explained due to the infor-

mative details were supplied using three months lag time

for building the learning process of the applied ML models

for the train/test phases. On the other hand, M5-Tree model

attained the best results for Lake Michigan (iii) combina-

tion, Lake Superior, Erie and Ontario (ii) combination, and

Lake St. Clair (i) combination.

When the data sets were examined, the best performance

results were seen in the M4 dataset for Lake Superior,

Michigan and Ontario, while the worst dataset was seen in

the M1 dataset for LSSVR, MARS and M5-Tree. On the

Table 5 (continued)

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

P-LSSVR RMSE M1 1995–2020 0.236 0.238 0.239 0.237

M2 1969–1995 0.374 0.374 0.375 0.374

M3 1943–1969 0.319 0.321 0.322 0.321

M4 1918–1943 0.426 0.432 0.435 0.431

Mean 0.339 0.341 0.342 0.341

MAE M1 1995–2020 0.189 0.193 0.195 0.192

M2 1969–1995 0.339 0.340 0.341 0.340

M3 1943–1969 0.257 0.261 0.262 0.260

M4 1918–1943 0.346 0.351 0.354 0.350

Mean 0.283 0.286 0.288 0.286

R2 M1 1995–2020 0.774 0.772 0.770 0.772

M2 1969–1995 0.652 0.658 0.660 0.657

M3 1943–1969 0.271 0.268 0.263 0.267

M4 1918–1943 0.072 0.065 0.061 0.066

Mean 0.442 0.441 0.439 0.440
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Table 6 Comparison of the LSSVR, MARS, M5-Tree models in predicting monthly lake levels of the St. Clair Station by using the data of

Michigan station

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

LSSVR RMSE M1 1995–2020 0.236 0.246 0.238 0.240

M2 1969–1995 0.140 0.143 0.377 0.220

M3 1943–1969 0.137 0.129 0.324 0.197

M4 1918–1943 0.299 0.294 0.430 0.341

Mean 0.203 0.203 0.343 0.250

MAE M1 1995–2020 0.218 0.223 0.193 0.211

M2 1969–1995 0.116 0.118 0.342 0.192

M3 1943–1969 0.093 0.089 0.263 0.148

M4 1918–1943 0.253 0.254 0.348 0.285

Mean 0.170 0.171 0.286 0.209

R2 M1 1995–2020 0.914 0.900 0.737 0.851

M2 1969–1995 0.833 0.836 0.640 0.770

M3 1943–1969 0.851 0.871 0.258 0.660

M4 1918–1943 0.729 0.767 0.075 0.524

Mean 0.832 0.843 0.428 0.701

MARS RMSE M1 1995–2020 0.262 0.262 0.255 0.260

M2 1969–1995 0.155 0.164 0.156 0.159

M3 1943–1969 0.141 0.129 0.130 0.134

M4 1918–1943 0.301 0.296 0.296 0.298

Mean 0.215 0.213 0.209 0.212

MAE M1 1995–2020 0.235 0.235 0.228 0.232

M2 1969–1995 0.130 0.132 0.126 0.129

M3 1943–1969 0.102 0.089 0.093 0.095

M4 1918–1943 0.256 0.257 0.260 0.257

Mean 0.181 0.178 0.177 0.178

R2 M1 1995–2020 0.905 0.913 0.916 0.911

M2 1969–1995 0.819 0.791 0.839 0.816

M3 1943–1969 0.832 0.870 0.867 0.856

M4 1918–1943 0.732 0.771 0.788 0.764

Mean 0.822 0.836 0.853 0.837

M5-Tree RMSE M1 1995–2020 0.259 0.265 0.268 0.264

M2 1969–1995 0.161 0.176 0.196 0.178

M3 1943–1969 0.147 0.159 0.152 0.153

M4 1918–1943 0.300 0.297 0.297 0.298

Mean 0.217 0.224 0.228 0.223

MAE M1 1995–2020 0.232 0.237 0.237 0.235

M2 1969–1995 0.136 0.141 0.155 0.144

M3 1943–1969 0.102 0.113 0.114 0.110

M4 1918–1943 0.254 0.253 0.256 0.254

Mean 0.181 0.186 0.190 0.186

R2 M1 1995–2020 0.902 0.905 0.887 0.898

M2 1969–1995 0.802 0.749 0.710 0.754

M3 1943–1969 0.827 0.795 0.816 0.813

M4 1918–1943 0.729 0.741 0.754 0.741

Mean 0.815 0.797 0.792 0.801
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other hand, Lake St. Clair and Lake Erie show the worst

performance in the M4 dataset. The best performances

were seen in the M1 dataset according to the MARS

method for St. Clair Lake and the M1 dataset according to

the three methods for St. Clair Lake. In addition, the best

performances in the M2 dataset for St. Clair Lake were

seen in the LSSVR and M5-Tree methods, respectively.

This is clearly exhibited the fact that the applied predictive

models could not discover the actual lake water levels

pattern using the M1 dataset over the train/test phases of

the network for Lake Superior, Michigan, and Ontario. On

the other hand, in Lake Erie and Lake St Clair, the M4 data

set can be interpreted as the methods could not discover the

lake levels. Among the three predictive models, LSSVR

model revealed the superior prediction results over MARS

and M5-Tree models using M4 dataset based on the third

constructed input combination. It can be observed, the

LSSVR average prediction value for the third input com-

bination and M3 dataset boosted the value of the RMSE

accuracy by 4.54 and 9.09 in comparison with the average

MARS and M5-Tree models for the Lake Superior and

boosted by 2.22 and 2.22% for the Lake Michigan-Huron

and by 6.36 and 15.45 for the Lake St. Clair and by 5.06

and 17.72% for the Lake Erie and by 5.62 and 23.59% for

the Lake Ontario, respectively.

5.2 Lake water level prediction using periodic
component

The forecasting modeling procedure also involved the

examination and evaluation of the periodicity data com-

ponent. The main aim of incorporating the periodical

dataset as sub-data is to support the learning process of the

applied ML models with external ‘‘informative’’ LWL

pattern that could offer a better understanding and improve

the results accuracy. The findings of the P-LSSVR model’s

optimal kernel parameters are shown in Appendix 5, whi-

le the results of the P-LSSVR model’s testing phase are

shown in Table 4. Periodicity component clearly improved

the average performance accuracy of the LSSVR model in

terms of RMSE and MAE for Lake Superior

(32.69–35.71%), Lake Michigan (by 30.19–30.23%), Lake

Huron (by 21.42–25.61%), Lake Erie (by 25.88–28.35%),

and Lake Ontario (by 25.24–25.92). When comparing

Tables 3 and 4, the periodic LSSVR shows that the mod-

eling accuracy is consistent, with LSSVR for lakes with

M3 as the best performing model and M1 as the poorest

model.

It is also good to evaluate the observed linear relation-

ship between the predicted and observed time-series for the

testing period as a way of further assessing the perfor-

mance of the used data-driven models. Figure 6 presents

the best and worst results in the form of scatter plots for the

studied Lakes. These figures showed the MARS, M5-Tree,

LSSVR, and P-LSSVR models for all the input combina-

tions. The P-LSSVR model established a good match and

reasonable agreement between the predicted and observed

lake levels.

During the testing period, the Taylor diagram was uti-

lized to show the spatial variance of the expected lake level

by the assessed models over the observed value [53]. The

standard deviation (SD) between the observed and ex-

pected values is established by Taylor diagrams in radial

intervals with roots, with the R values being the angles of

Table 6 (continued)

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

P-LSSVR RMSE M1 1995–2020 0.228 0.240 0.245 0.238

M2 1969–1995 0.159 0.160 0.161 0.160

M3 1943–1969 0.118 0.117 0.118 0.118

M4 1918–1943 0.291 0.292 0.292 0.292

Mean 0.199 0.202 0.204 0.202

MAE M1 1995–2020 0.210 0.216 0.219 0.215

M2 1969–1995 0.128 0.128 0.128 0.128

M3 1943–1969 0.083 0.082 0.083 0.083

M4 1918–1943 0.259 0.259 0.260 0.259

Mean 0.170 0.171 0.172 0.171

R2 M1 1995–2020 0.924 0.914 0.905 0.914

M2 1969–1995 0.826 0.823 0.821 0.823

M3 1943–1969 0.897 0.897 0.895 0.896

M4 1918–1943 0.813 0.811 0.811 0.812

Mean 0.865 0.861 0.858 0.861
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direction. It is assumed that the observed values on the

Taylor diagram have their own display, and that models

with greater performances tend to present prediction per-

formance indicators that are closer to the observed values

[52]. The Taylor diagrams of the predicted and observed

lake level values for the Great Lakes as produced by the

MARS, M5-Tree, LSSVR, and P-LSSVR models during

the testing phase (Appendix 6a–e).

In the area of engineering, the violin plot is one of the

most recently investigated graphical evaluations [54].

Conceptually the violin plot is made up of two plots: a box

plot and a density plot with a rotating kernel density on

each side. The Violin diagram was used to examine the

distribution of observed and simulated lake levels [55]. In

this study, instead of the classical violin diagram using the

mean and median, the new warrant violin diagram drawn in

the light of many statistical parameters (mean, median,

kernel density, Standard deviation with mean, quartiles,

etc.) proposed by Legouhy was used [56]. The structure of

the diagram is presented in Fig. 7.

The modeling results of the adopted case studied were

visualized using Violin diagrams of the observed and

predicted lake level values throughout the testing phase

as produced by the analyzed models for the Great Lakes

(Appendix 7a-e). The figures showed no clear differences

between the observed and model predictions; however, the

simulated distribution of the lake levels was substantially

closer to the observed lake levels distribution, especially in

(iii) combinations. The statistics of the Violin plots

for similar instances also revealed that MARS and M5-

Tree models have non-uniform values and an imbalanced

interquartile, whereas LSSVR and P-LSSVR models have

a lower error rate.

For (ii and iii) combinations, these figures showed that

the best models were P-LSSVR, LSSVR, MARS, and M5-

Tree. In comparison to the other models, P-LSSVR was

shown to be the best model for displaying close to the fit

line (Fig. 6). In general, the P-LSSVR and LSSVR models

outperformed the M5-Tree and MARS models. Periodic

component was also added for MARS and M5-Tree

methods in the study. But the performance ranking

remained below P-LSSVR. This could be due to the linear

structure of the adopted models MARS and M5-Tree in

which lead to limited learning process of the prediction

matrix and mimic the nonlinear relationship between the

predictors and predictand.

5.3 Cross station modeling for lake water level
prediction

In this section, lake level’s prediction has been conducted

using the P-LSSVR, LSSVR, MARS and M5-Tree based

on upstream lake level data for downstream stations. This

type of modeling is important in circumstances where lake

levels are lacking, or discharge monitoring is of quality.

Lake level prediction utilizing upstream stations can be

quite helpful in predicting missing data [23]. In this study,

the cross-station prediction was undertaken for the Lake

Michigan, Lake Huron, Lake Erie, and Lake Ontario. Since

the Superior Lake is located at the top upstream, the data

were used in the training phase and predictions were made

for the Michigan-Huron lake during the testing phase.

Similarly, prediction was made for Lake Huron with

Michigan-Huron lake training data. Lake Huron training

data was tested in Lake St. Clair. Lake Erie by training

Lake St. Clair levels and finally Lake Ontario was tested by

training Lake Erie. Since the hydrological characteristics of

the Great Lakes are similar (please see, Figs. 3 and 4) and

related (please see, Appendix 2 and Fig. 2), the estimates

will be based on homogeneous physical properties. The

data base was likewise cross-stationed and separated into

four parts here. Appendixes 8 and 9 expressed the ideal

parameters of the LSSVR and P-LSSVR model in a man-

ner similar to that of the previous subsection application

technique. Comparison of the LSSVR, MARS, M5-Tree

models in predicting monthly lake levels of the Michigan

Station by using the data of Superior station are given

Table 5. Similar results are given in Table 6 for Lake St.

Clair, Table 7 for Lake Erie, and Table 8 for Lake Ontario.

From the average RMSE and MAE parameters, the best

score provided by P-LSSVR and LSSVR models for M1

and M4 input combination (iii) and the worst score pro-

vided by M5-Tree models for M4 input combination (iii).

In addition, the three models, generally gave the M4 data

set and input combination (iii) the lowest accuracy scores.

Cross-station modeling gave the best performance in Lake

Erie, followed by Lake Ontario, then Lake Clair, and

finally Lake Michigan, according to the P-LSSVR method.

Unlike other lakes, it is seen that the errors (RMSE, MAE)

are more in Lake Michigan. This may be due to the fact

that the lake levels of Lake Superior, located at the

upstream of Lake Michigan, are controlled by Soo locks &

Dams (readers can refer to Fig. 2). In other words, there

may be an anthropogenic effect outside of its natural

hydrology.

The effect of inserting the periodicity feature on pre-

diction phase was investigated. This was done to find the

most accurate model in the preceding applications, which

was the LSSVR model. Based on the absolute error metrics

(i.e., RMSE and MAE), the prediction enhancement

between the applied LSSVR and P-LSSVR models are 8.85

and 8.14%, respectively. This is clearly can be justified

owing the additive. To further visualize the effect of

including the periodic component. Finally, LSSVR method

showed the best forecast and prediction, followed by

MARS and finally M5-Tree models. The performance of
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Table 7 Comparison of the LSSVR, MARS, M5-Tree models in predicting monthly lake levels of the Erie Station by using the data of St. Clair

station

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

LSSVR RMSE M1 1995–2020 0.119 0.119 0.116 0.118

M2 1969–1995 0.100 0.099 0.096 0.098

M3 1943–1969 0.113 0.108 0.103 0.108

M4 1918–1943 0.153 0.148 0.141 0.147

Mean 0.121 0.119 0.114 0.118

MAE M1 1995–2020 0.098 0.097 0.093 0.096

M2 1969–1995 0.078 0.076 0.074 0.076

M3 1943–1969 0.084 0.082 0.079 0.082

M4 1918–1943 0.119 0.114 0.109 0.114

Mean 0.095 0.092 0.089 0.092

R2 M1 1995–2020 0.906 0.916 0.918 0.913

M2 1969–1995 0.814 0.817 0.828 0.819

M3 1943–1969 0.841 0.861 0.876 0.860

M4 1918–1943 0.794 0.809 0.828 0.810

Mean 0.839 0.851 0.862 0.851

MARS RMSE M1 1995–2020 0.123 0.120 0.116 0.120

M2 1969–1995 0.100 0.105 0.099 0.101

M3 1943–1969 0.120 0.115 0.113 0.116

M4 1918–1943 0.160 0.152 0.148 0.153

Mean 0.126 0.123 0.119 0.122

MAE M1 1995–2020 0.100 0.096 0.093 0.097

M2 1969–1995 0.078 0.077 0.074 0.076

M3 1943–1969 0.088 0.086 0.086 0.086

M4 1918–1943 0.125 0.117 0.115 0.119

Mean 0.098 0.094 0.092 0.095

R2 M1 1995–2020 0.909 0.914 0.918 0.914

M2 1969–1995 0.813 0.800 0.821 0.811

M3 1943–1969 0.830 0.843 0.851 0.841

M4 1918–1943 0.775 0.796 0.807 0.793

Mean 0.832 0.838 0.849 0.840

M5-Tree RMSE M1 1995–2020 0.129 0.126 0.124 0.126

M2 1969–1995 0.100 0.108 0.113 0.107

M3 1943–1969 0.121 0.123 0.124 0.123

M4 1918–1943 0.158 0.161 0.159 0.160

Mean 0.127 0.130 0.130 0.129

MAE M1 1995–2020 0.103 0.102 0.099 0.101

M2 1969–1995 0.079 0.082 0.085 0.082

M3 1943–1969 0.090 0.092 0.093 0.092

M4 1918–1943 0.124 0.126 0.124 0.125

Mean 0.099 0.101 0.100 0.100

R2 M1 1995–2020 0.896 0.902 0.907 0.902

M2 1969–1995 0.813 0.791 0.781 0.795

M3 1943–1969 0.828 0.831 0.836 0.831

M4 1918–1943 0.785 0.765 0.776 0.775

Mean 0.830 0.822 0.825 0.826
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the LSSVR method increased with the addition of the

periodic component. The lake levels with the least errors

were obtained in the modeling performed in Lake Superior

and the highest error in Lake St. Clair. In cross-station

modelling, the best performance was obtained in Lake Erie,

which showed the highest correlation with Lake Clair. The

worst modeling was observed in the modeling where the

Lake Superior levels were used in the input dataset and the

Michigan lake levels were estimated. This is assumed to be

due to the fact that artificial rather than natural effects

dominate the hydrological relationship between the two

lakes.

6 Discussion

One of the major factors affecting the model’s perfor-

mances is the input combination selection. Therefore,

proper input selection is required prior to applying the

models. For this research, an input scenario based on the

autocorrelation function (ACF) and the partial autocorre-

lation function (PACF) was generated and analyzed for the

three models used to determine the number of effective

lags of antecedent lake level. Several studies have pre-

sented this strategy for determining the best inputs for data-

driven methods [57–61]. In all of the lakes, the PACF

shows that the first lag of lake levels has a significant

effect, while the second and third delays are extremely

close to the confidence limit. Therefore, lag 1, lag 2 and lag

3 were chosen as the input set for all lakes. Long trend lag

times for the current study indicates the appropriate dataset

for structuring the learning process of the predictive model

and thus for such a case study of the great lake, this must be

considered in the future research. The concept of the cross-

station modeling based on the computer learning transfer

research an optimistic result for the current investigation.

Indeed, this is not surprising as this technology has been

approved by several other research on other hydrological

applications [62–66].

7 Conclusion

The main aim of the present study is to provide a valid and

reliable predictive model for LWL based on the implication

of neurocomputing technology. For this purpose, three ML

models including LSSVR, MARS and M5-Tree were

developed to forecast LWL at five lakes located within

north America. At the first stage, the autocorrelation and

partial autocorrelation functions were used to select the

input data sets for analysis. The results of the three models’

performance were compared with mean absolute error

(MAE) and root mean square error (RMSE), determination

coefficient (R) and different aspects of the models’ accu-

racy were assessed using scatter plots, Taylor diagrams and

violin diagrams. As a result, this study finding indicates

that the P-LSSVR model is more powerful for all lake

levels modeling and a better alternative to the other three

neurocomputing intelligence models. Cross-station mod-

eling strategy showed a reliable technique for LWL fore-

casting using nearby hydrological information.

Table 7 (continued)

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

P-LSSVR RMSE M1 1995–2020 0.113 0.114 0.112 0.113

M2 1969–1995 0.087 0.088 0.088 0.088

M3 1943–1969 0.098 0.097 0.094 0.096

M4 1918–1943 0.137 0.135 0.130 0.134

Mean 0.109 0.108 0.106 0.108

MAE M1 1995–2020 0.090 0.088 0.087 0.088

M2 1969–1995 0.064 0.065 0.067 0.066

M3 1943–1969 0.073 0.074 0.072 0.073

M4 1918–1943 0.110 0.108 0.105 0.108

Mean 0.084 0.084 0.083 0.084

R2 M1 1995–2020 0.921 0.921 0.923 0.921

M2 1969–1995 0.861 0.862 0.858 0.860

M3 1943–1969 0.890 0.894 0.901 0.895

M4 1918–1943 0.841 0.840 0.844 0.842

Mean 0.878 0.879 0.881 0.880
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Table 8 Comparison of the LSSVR, MARS, M5-Tree models in predicting monthly lake levels of the Ontario Station by using the data of St.

Erie station

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

LSSVR RMSE M1 1995–2020 0.200 0.178 0.167 0.181

M2 1969–1995 0.268 0.270 0.245 0.261

M3 1943–1969 0.267 0.250 0.242 0.253

M4 1918–1943 0.164 0.160 0.163 0.162

Mean 0.225 0.214 0.204 0.214

MAE M1 1995–2020 0.158 0.140 0.134 0.144

M2 1969–1995 0.225 0.229 0.207 0.221

M3 1943–1969 0.217 0.204 0.195 0.205

M4 1918–1943 0.125 0.124 0.128 0.126

Mean 0.181 0.174 0.166 0.174

R2 M1 1995–2020 0.541 0.643 0.686 0.624

M2 1969–1995 0.531 0.525 0.589 0.548

M3 1943–1969 0.689 0.720 0.704 0.704

M4 1918–1943 0.809 0.825 0.813 0.816

Mean 0.643 0.678 0.698 0.673

MARS RMSE M1 1995–2020 0.203 0.181 0.175 0.186

M2 1969–1995 0.290 0.286 0.263 0.280

M3 1943–1969 0.271 0.255 0.251 0.259

M4 1918–1943 0.166 0.177 0.170 0.171

Mean 0.233 0.225 0.215 0.224

MAE M1 1995–2020 0.159 0.140 0.141 0.147

M2 1969–1995 0.244 0.242 0.222 0.236

M3 1943–1969 0.219 0.210 0.205 0.211

M4 1918–1943 0.126 0.140 0.134 0.133

Mean 0.187 0.183 0.176 0.182

R2 M1 1995–2020 0.535 0.634 0.654 0.608

M2 1969–1995 0.466 0.426 0.536 0.476

M3 1943–1969 0.668 0.727 0.694 0.696

M4 1918–1943 0.792 0.734 0.762 0.763

Mean 0.615 0.630 0.661 0.636

M5-Tree RMSE M1 1995–2020 0.211 0.198 0.191 0.200

M2 1969–1995 0.297 0.287 0.275 0.286

M3 1943–1969 0.274 0.260 0.253 0.262

M4 1918–1943 0.189 0.191 0.212 0.197

Mean 0.243 0.234 0.233 0.236

MAE M1 1995–2020 0.165 0.153 0.149 0.156

M2 1969–1995 0.249 0.242 0.232 0.241

M3 1943–1969 0.222 0.211 0.205 0.212

M4 1918–1943 0.145 0.151 0.164 0.153

Mean 0.195 0.189 0.187 0.191

R2 M1 1995–2020 0.494 0.559 0.595 0.549

M2 1969–1995 0.419 0.394 0.337 0.383

M3 1943–1969 0.641 0.651 0.634 0.642

M4 1918–1943 0.737 0.700 0.631 0.689

Mean 0.573 0.576 0.549 0.566
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Appendix 1

See Table 9.

Table 8 (continued)

Model Statistics Cross Station Test data set Input combination

(i) (ii) (iii) Mean

P-LSSVR RMSE M1 1995–2020 0.151 0.149 0.149 0.150

M2 1969–1995 0.221 0.221 0.220 0.221

M3 1943–1969 0.239 0.240 0.238 0.239

M4 1918–1943 0.166 0.162 0.161 0.163

Mean 0.194 0.193 0.192 0.193

MAE M1 1995–2020 0.118 0.117 0.116 0.117

M2 1969–1995 0.191 0.193 0.193 0.192

M3 1943–1969 0.193 0.192 0.191 0.192

M4 1918–1943 0.138 0.135 0.135 0.136

Mean 0.160 0.159 0.159 0.159

R2 M1 1995–2020 0.737 0.752 0.753 0.747

M2 1969–1995 0.689 0.711 0.701 0.700

M3 1943–1969 0.706 0.682 0.686 0.692

M4 1918–1943 0.764 0.778 0.781 0.774

Mean 0.724 0.731 0.730 0.728

Table 9 The statistical

parameters of the selected lakes

for the current research

Lake Period Xmean (m) Xmin (m) Xmax (m) Sx (m) Cs

Superior 1918–2020 183.41 182.72 183.91 0.204 - 0.258

Michigan-Huron 1918–2020 176.44 175.57 177.5 0.410 0.120

St. Clair 1918–2020 175.03 173.88 176.04 0.396 - 0.068

Erie 1918–2020 174.17 173.18 175.14 0.368 - 0.019

Ontario 1918–2020 74.77 73.74 75.91 0.346 0.103
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Appendix 2

See Table 10.

Appendix 3

See Table 11.

Table 10 Pearson correlation coefficients

Table 11 The monthly

statistical parameters of lake

stations

Lake Period xmean(m) xmin (m) xmax (m) Csx(m) Sx(m) r1 r2 r3

Superior 1918–1943 183.386 182.720 183.800 - 0.697 0.198 0.944 0.811 0.645

1943–1969 183.434 183.090 183.860 0.303 0.175 0.910 0.694 0.424

1969–1995 183.478 183.080 183.910 - 0.047 0.167 0.923 0.741 0.511

1995–2020 183.351 182.790 183.880 0.118 0.245 0.964 0.881 0.777

Michigan 1918–1943 176.252 175.660 177.180 0.493 0.352 0.981 0.935 0.872

1943–1969 176.404 175.580 177.280 - 0.042 0.359 0.981 0.935 0.874

1969–1995 176.767 176.150 177.500 0.262 0.269 0.970 0.900 0.811

1995–2020 176.349 175.570 177.460 0.616 0.442 0.987 0.956 0.916

St. Clair 1918–1943 174.694 173.880 175.520 0.121 0.316 0.889 0.737 0.595

1943–1969 174.953 174.140 175.660 - 0.232 0.320 0.913 0.788 0.661

1969–1995 175.374 174.770 175.960 0.265 0.225 0.918 0.824 0.710

1995–2020 175.110 174.440 176.040 0.576 0.361 0.960 0.890 0.809

Erie 1918–1943 173.832 173.180 174.640 0.270 0.293 0.940 0.817 0.678

1943–1969 174.083 173.400 174.760 - 0.013 0.278 0.932 0.784 0.607

1969–1995 174.468 173.970 175.040 0.171 0.231 0.922 0.772 0.598

1995–2020 174.282 173.730 175.140 0.554 0.320 0.953 0.853 0.730

Ontario 1918–1943 74.549 73.740 75.600 0.399 0.351 0.946 0.824 0.680

1943–1969 74.828 73.830 75.760 0.001 0.355 0.934 0.777 0.583

1969–1995 74.862 74.360 75.730 0.511 0.285 0.881 0.613 0.286

1995–2020 74.833 74.280 75.910 0.632 0.294 0.877 0.599 0.270
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Appendix 4

See Table 12.

Appendix 5

See Table 13. .

Table 12 Regularization

constant and width of RBF

kernel parameters of the optimal

LSSVR models for Superior,

Michigan, St. Clair, Erie and

Ontario Lake stations

Cross validation Training data set Test data set Input combination

(i) (ii) (iii)

Lake Superior

M1 1918–1995 1995–2020 (100, 69) (71, 100) (100, 55)

M2 1918–1969 and 1995–2020 1969–1995 (3, 100) (76, 1) (56, 4)

M3 1918–1943 and 1969–2020 1943–1969 (3, 100) (60, 100) (49, 3)

M4 1943–2020 1918–1943 (100, 11) (100, 10) (100, 14)

Lake Michigan

M1 1918–1995 1995–2020 (34, 100) (100, 37) (100, 18)

M2 1918–1969 and 1995–2020 1969–1995 (15, 2) (36, 3) (79, 7)

M3 1918–1943 and 1969–2020 1943–1969 (32, 100) (100, 7) (100, 8)

M4 1943–2020 1918–1943 (100, 3) (100, 4) (100, 2)

Lake St. Clair

M1 1918–1995 1995–2020 (15, 100) (100, 3) (100, 49)

M2 1918–1969 and 1995–2020 1969–1995 (10, 15) (3, 31) (4, 42)

M3 1918–1943 and 1969–2020 1943–1969 (1, 29) (61, 1) (49, 1)

M4 1943–2020 1918–1943 (47, 100) (100, 6) (100, 9)

Lake Erie

M1 1918–1995 1995–2020 (99, 6) (100, 12) (100, 35)

M2 1918–1969 and 1995–2020 1969–1995 (17, 28) (13, 49) (45, 100)

M3 1918–1943 and 1969–2020 1943–1969 (3, 100) (100, 1) (50, 1)

M4 1943–2020 1918–1943 (100, 12) (100, 24) (100, 31)

Lake Ontario

M1 1918–1995 1995–2020 (2, 90) (13, 1) (16, 3)

M2 1918–1969 and 1995–2020 1969–1995 (8, 4) (100, 6) (100, 7)

M3 1918–1943 and 1969–2020 1943–1969 (33, 1) (11, 1) (100, 5)

M4 1943–2020 1918–1943 (100, 12) (100, 18) (100, 28)
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Appendix 6a

See Fig. 8.

Table 13 Regularization

constant and width of RBF

kernel parameters of the optimal

P-LSSVR models for Superior,

Michigan, St. Clair, Erie and

Ontario Lake stations

Cross validation Training data set Test data set Input combination

(i) (ii) (iii)

Lake Superior

M1 1918–1995 1995–2020 (30, 11) (59, 20) (100, 45)

M2 1918–1969 and 1995–2020 1969–1995 (100, 16) (41, 2) (54, 4)

M3 1918–1943 and 1969–2020 1943–1969 (8, 2) (100, 5) (100, 5)

M4 1943–2020 1918–1943 (100, 9) (100, 4) (100, 12)

Lake Michigan

M1 1918–1995 1995–2020 (100, 13) (100, 19) (100, 19)

M2 1918–1969 and 1995–2020 1969–1995 (100, 5) (100, 8) (100, 25)

M3 1918–1943 and 1969–2020 1943–1969 (100, 7) (100, 10) (100, 19)

M4 1943–2020 1918–1943 (67, 7) (100, 11) (100, 7)

Lake St. Clair

M1 1918–1995 1995–2020 (14, 46) (100, 85) (100, 91)

M2 1918–1969 and 1995–2020 1969–1995 (29, 20) (50, 2) (33, 63)

M3 1918–1943 and 1969–2020 1943–1969 (100, 7) (51, 10) (26, 4)

M4 1943–2020 1918–1943 (76, 9) (23, 9) (17, 9)

Lake Erie

M1 1918–1995 1995–2020 (60, 57) (100, 79) (100, 77)

M2 1918–1969 and 1995–2020 1969–1995 (45, 2) (42, 35) (48, 45)

M3 1918–1943 and 1969–2020 1943–1969 (12, 3) (23, 5) (100, 9)

M4 1943–2020 1918–1943 (100, 8) (100, 24) (100, 39)

Lake Ontario

M1 1918–1995 1995–2020 (90, 5) (48, 4) (28, 4)

M2 1918–1969 and 1995–2020 1969–1995 (8, 2) (100, 5) (86, 6)

M3 1918–1943 and 1969–2020 1943–1969 (69, 40) (100, 15) (100, 11)

M4 1943–2020 1918–1943 (100, 85) (100, 25) (100, 29)
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Fig. 8 Scatter plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Superior
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Appendix 6b

See Fig. 9.

Fig. 9 Scatter plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Michigan-

Huron
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Appendix 6c

See Fig. 10.

Fig. 10 Scatter plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake St. Clair
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Appendix 6d

See Fig. 11.

Fig. 11 Scatter plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Erie
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Appendix 6e

See Fig. 12.

Fig. 12 Scatter plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Ontario
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Appendix 7a

See Fig. 13.

Fig. 13 Violin plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Superior
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Appendix 7b

See Fig. 14.

Fig. 14 Violin plots of the

observed and predicted lake

level values during testing

phase, produced by MARS, M5-

Tree, LSSVR and P-LSSVR

models for the Lake Michigan-

Huron
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Appendix 7c

See Fig. 15.

Appendix 7d

See Fig. 16.

Appendix 7e

See Fig. 17.

Fig. 15 Violin plots of the observed and predicted lake level values

during testing phase, produced by MARS, M5-Tree, LSSVR and

P-LSSVR models for the Lake St. Clair

Fig. 16 Violin plots of the observed and predicted lake level values

during testing phase, produced by MARS, M5-Tree, LSSVR and

P-LSSVR models for the Lake Erie
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Appendix 8

See Table 14.

Appendix 9

See Table 15.

Fig. 17 Violin plots of the observed and predicted lake level values

during testing phase, produced by MARS, M5-Tree, LSSVR and

P-LSSVR models for the Lake Ontario

Table 14 The optimal parameters of the LSSVR models in cross

application

Cross Station Test data set Input combination

(i) (ii) (iii)

Lake Michigan

M1 1995–2020 (100, 100) (83, 2) (100, 4)

M2 1969–1995 (53, 100) (29, 100) (74, 100)

M3 1943–1969 (1, 100) (1, 100) (1, 24)

M4 1918–1943 (1, 100) (1, 100) (1, 100)

Lake St. Clair

M1 1995–2020 (1, 100) (1, 100) (1, 100)

M2 1969–1995 (83, 100) (10, 69) (4, 69)

M3 1943–1969 (100, 2) (100, 4) (86, 7)

M4 1918–1943 (100, 100) (100, 60) (12, 1)

Lake Erie

M1 1995–2020 (4, 100) (100, 3) (15, 13)

M2 1969–1995 (98, 88) (78, 100) (24, 50)

M3 1943–1969 (1, 79) (100, 2) (1, 1)

M4 1918–1943 (10, 100) (100, 7) (100, 12)

Lake Ontario

M1 1995–2020 (1, 100) (100, 8) (100, 21)

M2 1969–1995 (1, 100) (100, 3) (100, 6)

M3 1943–1969 (100, 76) (100, 1) (63, 3)

M4 1918–1943 (84, 2) (100, 40) (100, 59)

Table 15 The optimal parameters of the P-LSSVR models in cross

application

Cross Station Test data set Input combination

(i) (ii) (iii)

Lake Michigan

M1 1995–2020 (100, 77) (69, 100) (47, 100)

M2 1969–1995 (100, 90) (84, 100) (68, 100)

M3 1943–1969 (1, 100) (1, 12) (1, 19)

M4 1918–1943 (1, 100) (1, 100) (1, 100)

Lake St. Clair

M1 1995–2020 (1, 100) (1, 100) (1, 100)

M2 1969–1995 (62, 37) (100, 80) (83, 100)

M3 1943–1969 (100, 9) (100, 12) (37, 11)

M4 1918–1943 (57, 12) (100, 43) (100, 46)

Lake Erie

M1 1995–2020 (4, 79) (100, 16) (100, 30)

M2 1969–1995 (69, 15) (9, 14) (14, 100)

M3 1943–1969 (1, 2) (7, 5) (100, 12)

M4 1918–1943 (100, 7) (70, 10) (74, 14)

Lake Ontario

M1 1995–2020 (1, 15) (100, 27) (100, 35)

M2 1969–1995 (1, 100) (100, 25) (1, 8)

M3 1943–1969 (1, 4) (100, 4) (100, 6)

M4 1918–1943 (100, 22) (100, 47) (100, 61)
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