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Abstract
This study investigates the accuracy of three different techniques with the periodicity component for estimating monthly 
lake levels. The three techniques are multivariate adaptive regression splines (MARS), least-square support vector regres-
sion (LSSVR), and M5 model tree (M5-tree). Data from Lake Michigan, located in the USA, is used in the analysis. In the 
first stage of modeling, three techniques were applied to forecast monthly lake level fluctuations up to 8 months ahead of 
time intervals. In the second stage, the influence of the periodicity component was applied (month number of the year, e.g., 
1, 2, 3, …12) as an external subset in modeling monthly lake levels. The root-mean-square error, mean absolute error, and 
coefficient of determination were used for evaluating the accuracy of the models. In both stages, the comparison results 
indicate that MARS generally outperforms LSSVR and M5-tree. Further, it has been discovered that including periodicity 
as an input to the models improves their accuracy in projecting monthly lake levels.

1 Introduction

Lake level fluctuations are significant for lakeshore structure 
planning, designing, building, and operation, as well as for 
managing freshwater lakes for water supply purposes. To 
regulate future lake level fluctuations, methods for modeling 
high or abnormal level fluctuations should be devised. The 
level measurements, or their future equally likely reproduc-
tions acquired using a simulation model, are straightforward 
manners of obtaining lake management decision variables. 
Although comprehensive models incorporating hydrologi-
cal and hydrometeorological variables, such as precipita-
tion, runoff, temperature, and evaporation, can be found, 
it is more economically advantageous to use models that 
simulate lake level fluctuations based on past level records 
(Şen et al. 2000).

Lakes are used for various domestic, industrial, and 
agricultural purposes (Vuglinskiy 2009; Shiri et al. 2016). 
Forecasting lake water levels is crucial for water resource 
planning and management, lake navigation, tidal irrigation, 

and agricultural drainage canal management, etc. Lake water 
level is a complicated phenomenon; it is primarily influ-
enced by natural water exchange between the lake and its 
watershed, and consequently reflects hydrological changes in 
the watershed (Altunkaynak 2007; Karimi et al. 2012). For 
many practical applications, a model that forecasts lake level 
fluctuations based on previously measured levels is required 
(Karimi et al. 2012).

Over the last few decades, numerous researchers have 
studied lake water level models because global climate 
change impacts the hydrological cycle, causing many 
lakes to dry up or flood unexpectedly. To model lake 
level fluctuations, several techniques have been devised. 
Şen et al. (2000) employed periodic and stochastic pro-
cesses. Altunkaynak et al. (2003) used the diagram model 
and Markov process. Altunkaynak (2007) employed an 
artificial neural network. Altunkaynak and Şen (2007) 
used fuzzy logic. Kişi (2009) used a wavelet conjunction 
model. Karimi et al. (2012) employed gene expression pro-
gramming and an adaptive neuro-fuzzy inference system 
(ANFIS). Sanikhani et al. (2015) also used ANFIS and 
gene expression programming. Young et al. (2015) used a 
timeseries forecasting model. Shiri et al. (2016) employed 
an extreme learning machine approach. Shafaei and Kisi 
(2016) employed the wavelet-support vector regres-
sion (SVR), wavelet-ANFIS, and wavelet-autoregressive 
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moving average model conjunction models. Liang et al. 
(2018) used a deep learning method. Peprah et al. (2021) 
employed integrated moving average and kalman filter-
ing techniques. Luo et al. (2021) used machine learning 
methods.

Recently, three machine learning techniques, multivari-
ate adaptive regression splines (MARS), least-square SVR 
(LSSVR), and M5 model tree (M5-tree), have achieved a 
remarkable emerging and promise in addressing difficult 
nonlinear situations. These techniques have been widely 
employed in solving hydrologic challenges (Yaseen et al. 
2016; Kisi et al. 2017a, b; Demir and Çubukçu 2021). 
MARS is a newer artificial intelligence technique (Fried-
man 1991). The ability to capture the natural difficulty of 
data mapping in high-dimensional data patterns, a rapid 
and adaptable model and accurate forecasting of continu-
ous and binary output variables are its main advantages. 
Further, this nonparametric statistical method provides a 
versatile procedure for organizing the relationship between 
input and output variables with fewer variable interactions 
(Leathwick et al. 2006). Rainfall and temperature fore-
casting, streamflow forecasting, sediment concentration 
estimate, water pollution forecast, air pollutant forecast, 
freshwater distribution system modeling, and drought 
events river flow simulation are previous water resources 
applications of MARS (Leathwick et al. 2006; Sotomayor 
2010; Adamowski et al. 2012; Kisi 2015a; Shortridge et al. 
2015; Kisi and Parmar 2016; Yaseen et al. 2016; Kisi et al. 
2017b).

LSSVR is a modified variant of SVR that can solve 
problems involving quadratic programming (Suykens and 
Vandewalle 1999). It also avoids some flaws that other data-
driven learning systems have (e.g., local minima, time con-
sumption, and overfitting) (Ji et al. 2014). In the engineering 
field, LSSVR has been successfully applied; e.g., to predict 
wastewater effluent parameters (Huang et al. 2009), design 
the structural components of a wing-box for an airplane 
(Deng and Yeh 2010), design a superconducting magnetic 
energy storage controller with adaptive dampening (Pahasa 
and Ngamroo 2011), forecast  CO2 emission in reservoir 
(Shokrollahi et al. 2013), analyze oil recovery (Kamari et al. 
2014), forecast reservoir oil viscosity (Hemmati-Sarapardeh 
et al. 2014). In the hydrological study, few studies have been 
conducted using LSSVR; for example, streamflow forecast-
ing and estimation (Kisi 2015b; Yaseen et al. 2016; Kisi 
et al. 2017b), daily water demand and dam daily inflow esti-
mation of (Hwang et al. 2012), sediment transport modeling 
(Kisi 2012), daily reference evapotranspiration modeling 
(Kisi 2013), reservoir inflow modeling (Okkan and Ali Ser-
bes 2013), water pollution forecast (Kisi and Parmar 2016), 
air pollutant forecast (Kisi et al. 2017a).

M5-tree is a data mining technique that uses the divide-
and-conquer method to split data timeseries into subspaces, 
allowing a multidimensional parameter space to be divided 
and the model to be automatically generated on the basis 
of the overall quality requirement (Quinlan 1992). Scholars 
recently investigated the M5-tree's utility in many hydro-
logical applications, such as water level optimization (Bhat-
tacharya and Solomatine 2005), precipitation and river flow 
modeling (Solomatine and Dulal 2003), streamflow mod-
eling (Yaseen et al. 2016), wind speed modeling (Başakın 
et al. 2022), air pollutant modeling (Kisi et al. 2017a), evap-
otranspiration modeling (Pal and Deswal 2009), pan-evapo-
ration modeling (Kisi 2015a), flood events (Solomatine and 
Xue 2004), and sediment yield modeling (Goyal 2014).

Based on the reported database of Scopus for “machine 
learning” and “lake level” over 161 document results were 
appeared. A set of significant keywords for this study 
domain has been created using the VOSviewer algorithm 
(Fig. 1a). In addition, when the adopted research is analyzed 
based on the time scale (Fig. 1a), it is seen that many stud-
ies have been published in 2016 and beyond. These studies 
seem to have more research interest on data science, predic-
tion, time series, water quality, classification ect., and new 
machine learning models such as deep learning, support vec-
tor machine, random forest, regresion tree, extreme learn-
ing machine etc. Figure 1b shows the main regions where 
machine learning and lake level have been investigated. It 
is the region of China with the most research (47), followed 
by USA (40), Canada (18), Iran (17).

In this study, the major goals are to (i) investigate three 
different novel heuristic regression techniques (MARS, 
LSSVR, and M5-tree) for modeling water level forecasting, 
(ii) investigate the influence of the periodicity component 
(months of the observed data) for water level forecasting, 
(iii) demonstrate the effectiveness of the proposed models; 
Lake Michigan in the USA was employed.

2  Case study and data preparation

The name, Lake Michigan comes from the Ojibwa term, 
Michi Gami, which means “large lake”. Lake Michigan is 
in the USA (coordinates: 44°N 87°W); it is the third-largest 
lake in the Lake District, comprising five interconnected 
large lakes, and the sixth-largest freshwater lake globally 
(see Fig. 2). With a surface area of 58,016  km2, drainage 
area of 118,095  km2, a width of 48–193 km, a length of 
494 km, and deepest point of 0.281 km, the lake is the only 
lake in the middle northeast of the USA, among the Great 
Lakes, which remains entirely within the country’s territory 
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(Michigan 2021a). Lake Michigan is bordered by Wisconsin 
to the west, Illinois and Indiana to the south, and Michigan 
to the east. The surface of the lake, whose waters are fresh, 
is 0.177 km above sea level. It is connected by the Strait of 
Mackinac to Lakes Superior, Huron, Erie, and Ontario from 
its northeast corner (Michigan 2021b).

Forecasting lake level f luctuations is critical for 
many operations in Lake Michigan region, including 
flood mitigation, reservoir management, drinking water 
distribution, water infrastructure management, trade, 
transportation, and beach erosion. The observed data 
are 103 years (1236 months) long with an observation 

Fig. 1  The literature review keywords (a) and research regions (b)
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period between 1918 and 2020 for the Lake Michigan 
station (IGLD 1985: Brochure on the International Great 
Lakes Datum 1985). The observed data were acquired 
from the report of the U.S. Army Corps of Engineers 
website: “https:// www. lre. usace. army. mil/ Missi ons/ 
Great- Lakes- Infor mation/ Great- Lakes- Infor mation- 2/ 
Water- Level- Data/.” The statistical parameters of the 
data used during the study period are shown in Table 1. 
The observed lake level fluctuation data for Lake Michi-
gan, as well as the training and test datasets, are shown 
in Fig. 3.

The partial autocorrelation and autocorrelation func-
tions of the lake levels for Lake Michigan are also shown 
in Fig. 4. The figure shows that the lake level in Lake 
Michigan highly correlates with past month levels. The 
partial autocorrelation function indicates a significant 
correlation up to lag 8 for Lake Michigan and then stays 
within the confidence interval.

3  Methods

3.1  MARS

Friedman proposed the MARS model, which is a nonpara-
metric regression model (Friedman 1991). MARS is a model 
used to forecast nonlinear continuous numerical results. It 
explains the complex nonlinear relationship between a model, 
estimation method, and dependent variables. The MARS 
algorithm comprises two steps: forward and backward steps. 
It selects a set of suitable input variables with the forward 
step algorithm (De Andrés et al. 2011). With the backward 
step algorithm, it eliminates unnecessary variables in the 
preselected set. A graph is plotted from variable X to the 
new variable Y by two base functions or both variable values 
defined at the deviation point across the input range using the 
following fundamental equations (Sharda et al. 2006):

Fig. 2  Study area: (a) Great Lakes, and (b) Lake Michigan (Michigan 2021a) (b)

Table 1  Monthly statistical 
information of datasets for Lake 
Michigan

Data set Period Xmean (m) Xmin (m) Xmax (m) Csx Sx Ckx

All data 1918–2020 176.44 175.57 177.5 0.119 0.409  − 0.763
Training 1918–1999 176.48 175.58 177.5  − 0.075 0.389  − 0.644
Test 1999–2020 176.28 175.57 177.46 0.949 0.445  − 0.018
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where c represents the threshold (lower limit) value. The 
MARS model is used especially in financial affairs manage-
ment systems and timeseries data (Sephton 2001; Bera et al. 
2006; Yaseen et al. 2016; Kisi et al. 2017a, b; Demir and 
Çubukçu 2021).

3.2  LSSVR

LSSVR is an extension of SVR, proposed by Suykens and 
Vandewalle in 1999 (Suykens and Vandewalle 1999). It is 
employed to statistically estimate water levels with the water 
levels in the historical timeseries and obtain the optimum func-
tion between the X input and Y output (Yaseen et al. 2016). It 
performs this operation with a nonlinear relationship function 
in a multidimensional feature space. The regression function 
can be expressed as follows:

(1)Y = max(0,X − c)

(2)Y = max(0, c − x)

(3)y(x) = wT
�(x) + b

Where y is the value obtained in x, w is the coefficient 
vector, φ is the mapping function, b is the bias term obtained 
from minimizing the generalization error’s upper bound 
(Suykens and Vandewalle 1999).

3.3  M5‑tree

M5-tree algorithm is a new regression method developed 
by Quinlan in 1992 (Quinlan 1992). Its backbone is a two-
component decision tree. The method defines the relation-
ship between the independent and dependent variables with 
a linear regression function applied to the final leaf nodes. 
M5-tree is better than other decision tree models used for 
categorical data (Mitchell 1997).

M5-tree is a two-stage model. In the first stage, data are 
split into subsets to produce the decision schema (tree). The 
standard deviation of the class value reached at a node is 
used to classify. The expected reduction is calculated on the 
basis of the error that occurs due to testing the elements act-
ing on this node. (Solomatine and Xue 2004; Pal and Deswal 
2009). The expression of the standard deviation reduction 
(SDR) is as follows.

Fig. 3  Lake Michigan water 
level fluctuations and training–
test datasets

Fig. 4  Monthly lake level autocorrelation and partial autocorrelation coefficients for Lake Michigan
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In this formula, sd is the standard deviation, and T rep-
resents a set of instances acting on the node. Subset sam-
ples with “i” results of potential data are represented by Ti 
(Quinlan 1992).

4  Results and discussion

The three heuristic regression techniques evaluated (MARS, 
LSSVR and M5-Tree) were created using MATLAB subrou-
tines to estimate the lake levels forecasting. The data were 
divided into the training and test datasets before modeling. 
The training dataset accounts for 80% (1236 × 0.8 = 989), 
whereas the test dataset accounts for 20% (247). Quantita-
tive indicators are commonly used to evaluate hydrological 
applications. Legates and McCabe (1999) suggested that 
predictive models in the hydrology field be tested using 
goodness-of-fit methods, e.g., root-mean-square error 
(RMSE), mean absolute error (MAE), and coefficient of 

(4)SDR = sd(T) −
∑ |Ti|

|T|
sd(Ti)

determination  (R2), as shown in Eqs. (5)–(7), respectively 
(Legates and McCabe 1999).

In Eqs. (5)–(7),  Le and  Lo indicate the estimated and 
observed water levels values, respectively, and N indicates 
the raw water level amount of data. This study aims to fore-
cast lake level fluctuations by MARS, M5-Tree, and LSSVR. 
In this context, different input combinations were explored 
to forecast the water levels. The inputs include the previous 

(5)RMSE|RMSD =

√√√√ 1

N

N∑

i=1

(Le − Lo)
2

(6)MAE =
1

N

N∑

i=1

||Le − Lo
||

(7)R2 =

�
N∑
i=1

(Le−Le)(Lo − Lo)

�2

N∑
i=1

(Le − Le)
2

N∑
i=1

(Lo − Lo)
2

Table 2  Results of heuristic regression techniques

Model Inputs Training Test

RMSE MAE R2 RMSE MAE R2

MARS I: t − 1 0.068 0.055 0.970 0.069 0.055 0.971
II: t − 1, t − 2 0.047 0.037 0.986 0.049 0.039 0.986
III: t − 1, t − 2, t − 3 0.045 0.035 0.987 0.046 0.037 0.987
IV: t − 1, t − 2, t − 3, t − 4 0.044 0.034 0.987 0.045 0.036 0.988
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.043 0.033 0.988 0.044 0.035 0.988
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.042 0.033 0.988 0.043 0.034 0.989
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.042 0.033 0.988 0.043 0.034 0.989
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.042 0.033 0.988 0.0425 0.0332 0.9892

LSSVR I: t − 1 0.068 0.055 0.969 0.069 0.055 0.971
II: t − 1, t − 2 0.047 0.037 0.986 0.048 0.038 0.986
III: t − 1, t − 2, t − 3 0.045 0.035 0.987 0.045 0.036 0.987
IV: t − 1, t − 2, t − 3, t − 4 0.042 0.033 0.988 0.045 0.035 0.988
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.042 0.032 0.989 0.043 0.034 0.989
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.041 0.032 0.989 0.043 0.033 0.989
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.040 0.031 0.989 0.043 0.033 0.989
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.040 0.031 0.990 0.0427 0.0332 0.9890

M5-Tree I: t − 1 0.067 0.053 0.971 0.074 0.058 0.967
II: t − 1, t − 2 0.045 0.035 0.986 0.050 0.040 0.985
III: t − 1, t − 2, t − 3 0.045 0.035 0.987 0.046 0.037 0.987
IV: t − 1, t − 2, t − 3, t − 4 0.044 0.034 0.987 0.045 0.035 0.988
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.043 0.034 0.988 0.0430 0.0340 0.9888
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.039 0.029 0.990 0.059 0.045 0.979
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.038 0.029 0.990 0.058 0.044 0.980
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.038 0.028 0.990 0.057 0.044 0.980

920 V. Demir



1 3

monthly lake levels (t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, 
t − 8), and the outputs correspond to the lake level at time t.

The results of heuristic regression techniques in terms 
of RMSE, MAE, and  R2 are summarized in Table 2 with 

input combinations. RMSE ≤ 60 cm indicates an excellent 
and appropriate estimate (Coulibaly 2010; Sanikhani et al. 
2015). For Lake Michigan, RMSE ≤ 7.4 cm is an excellent 
and satisfactory estimate.

Fig. 5  Observed and forecasted lake level timeseries and scatter plots for the training phase
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According to the training results, the input combination 
(t − 1 to t − 8) had the most significant effect on forecasting 
lake levels of t. M5-tree yielded the least error in the training 
phase, followed by LSSVR and MARS with little difference. 
In the test phase, the input combinations were compatible 

with the autocorrelation and partial autocorrelation in Fig. 4 
in MARS and LSSVR. However, errors increased after the 
fifth combination (t − 1 to t − 5) in M5-tree. MARS were fol-
lowed by LSSVR and M5-tree, which yielded the least error 
and was closest to the best fit. The timeseries plot of the best 

Fig. 6  Observed and forecasted lake level timeseries and scatter plots for the test phase
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results for each method and the scatter plot are depicted in 
Figs. 5 and 6.

In the second modeling part, the periodicity data com-
ponent was examined and evaluated. In reality, the main 
purpose of integrating this periodic subdata, which is one 
year to forecast one month ahead, was to provide the mod-
eling with an external flow pattern that could yield a more 
comprehensive understanding and higher outcome accuracy 
(Yaseen et al. 2016). The outcomes of the training and test 
phase for periodic heuristic regression techniques are sum-
marized in Table 3. The addition of the periodicity compo-
nent increased the average performance in all models. In 
particular, it improved the model test performance accuracy 
in terms of RMSE and MAE by 15.53–13.25% (For exam-
ple RMSE for best MARS:0.0425–0.0425 × 0.1553 = 0.035
9), 11.24–8.43%, and 4.98–11.08% for best MARS and best 
LSSVR, respectively.

The timeseries plot of the best results for the methods and 
the scatter plots are depicted in Figs. 7 and 8.

Figures 5 and 6 better represented the values observed 
in Figs. 7 and 8 with the effect of periodicity. The values 
observed during the training phase in Figs. 5 and 6 were 
generally captured by the models. In other words, it was 

generally forecasted correctly. However, although the 
long-term periodic fluctuations of the values observed in 
the test phase in Figs. 7 and 8 were well predicted, the 
short-time fluctuations were under estimated according to 
the three techniques. Table 2 better represented the values 
observed in Table 3 with the effect of periodicity. From 
Table  2, P-MARS (VIII inputs) in all datasets yielded 
lower RMSE and MAE and higher  R2 values than the oth-
ers (RMSE = 0.0359; MAE = 0.0288;  R2 = 0.9922). The 
worst results were obtained from the (I) 1 input model 
using M5-tree (RMSE = 0.074; MAE = 0.058;  R2 = 0.967). 
In Fig. 8, P-MARS (VIII inputs) yielded better estimates 
than others, especially in the scatter diagrams (assuming the 
equation is y = ax + b), and the coefficients a and b (in the 
linear equation a and b are closer to 1 and 0, respectively). 
The reason behind this was that the MARS structure and 
the periodicity data component could accurately model the 
highly nonlinear lake level process (Yaseen et al. 2016).

Although MAE, RMSE, and  R2 error criteria demon-
strated the accuracy of the estimated variables, these error 
statistics do not reveal information about the distribution of 
the models (Citakoglu 2021). Therefore, the Taylor diagram 
and Violin plot containing statistical analysis was used while 

Table 3  Results of heuristic regression techniques with periodicity data component

Model Inputs Training Test

RMSE MAE R2 RMSE MAE R2

P-MARS I: t − 1 0.040 0.031 0.989 0.040 0.032 0.991
II: t − 1, t − 2 0.035 0.028 0.992 0.036 0.029 0.992
III: t − 1, t − 2, t − 3 0.035 0.028 0.992 0.036 0.029 0.992
IV: t − 1, t − 2, t − 3, t − 4 0.035 0.028 0.992 0.036 0.029 0.992
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.035 0.028 0.992 0.036 0.029 0.992
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.035 0.028 0.992 0.036 0.029 0.992
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.035 0.028 0.992 0.036 0.029 0.992
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.035 0.028 0.992 0.0359 0.0288 0.9922

P-LSSVR I: t − 1 0.040 0.032 0.989 0.041 0.033 0.990
II: t − 1, t − 2 0.035 0.027 0.992 0.036 0.029 0.992
III: t − 1, t − 2, t − 3 0.035 0.027 0.992 0.037 0.029 0.992
IV: t − 1, t − 2, t − 3, t − 4 0.034 0.027 0.992 0.037 0.029 0.992
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.034 0.027 0.992 0.037 0.030 0.992
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.034 0.027 0.992 0.038 0.030 0.991
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.034 0.027 0.992 0.038 0.030 0.991
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.034 0.027 0.992 0.0379 0.0304 0.9912

P-M5-Tree I: t − 1 0.039 0.029 0.990 0.057 0.045 0.981
II: t − 1, t − 2 0.033 0.025 0.993 0.053 0.042 0.983
III: t − 1, t − 2, t − 3 0.032 0.024 0.993 0.055 0.044 0.982
IV: t − 1, t − 2, t − 3, t − 4 0.033 0.024 0.993 0.055 0.044 0.981
V: t − 1, t − 2, t − 3, t − 4, t − 5 0.032 0.024 0.993 0.055 0.044 0.981
VI: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6 0.032 0.023 0.993 0.055 0.044 0.982
VII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7 0.032 0.023 0.993 0.054 0.043 0.982
VIII: t − 1, t − 2, t − 3, t − 4, t − 5, t − 6, t − 7, t − 8 0.031 0.023 0.994 0.055 0.044 0.981
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Taylor diagrams for the best result of MARS, LSSVR, 
M5-tree models and P-MARS, P-LSSVR, P-M5-tree mod-
els are presented in Fig. 9. As can be inferred from Fig. 9, 
the models were relatively similar to each other. However, 

Fig. 7  Observed and forecasted lake level timeseries and scatter plots for the periodic training phase

comparing methods (Taylor 2001; Legouhy 2021; Başakın 
et al. 2022). Taylor diagram assessed compliance of estima-
tion data with observed data. With the use of the Taylor 
diagram, further comparisons of the models were achieved. 
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P-MARS was separable from the other approaches at the 
Taylor diagram. P-MARS model yielded quite close to 
observed data. Therefore, the Taylor diagram also revealed 
that the P-MARS approach was more successful than the 
other models.

Violin plot shows the compatibility of the forecast data 
with the observed data with the help of statistical param-
eters. An additional comparison was made using the Vio-
lin plot for the models (Fig. 10). The Violin plot used in 
this study was modified from Legouhy (2021). The model 

Fig. 8  Observed and forecasted lake level timeseries and scatter plots for the periodic test phase
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results are expressed in the original part (before) at the 
first stage, and then the results using the periodic compo-
nent are given in the after part. With the addition of the 
periodic component, the performance of the MARS and 
LSSVR methods increased, but the performance of the 
M5-tree method decreased. This situation is understood by 
the similarity of the observed violin graph and the graphs 
of the other methods.

Finally, in this study, a statistical significance test was 
performed between the results of the best methods and the 
observed data. The Kruskal–Wallis (KW) test was used 
to determine whether the estimated and measured data 
had similar distributions (Citakoglu 2021; Görkemli et al. 
2022). As seen in Table 4, the  H0 hypothesis is rejected in 

the estimations of the methods of lake level fluctuations. 
In other words, it shows that there is no significant differ-
ence between the means of the forecasted and observed 
data. The KW test was performed at 95% of the confidence 
interval, and the critical value was  pcri = 0.05.

5  Conclusion

In this study, the applicability of MARS, M5-tree, and 
LSSVR in forecasting lake level fluctuations was investi-
gated. Lake level observations from Lake Michigan in the 
USA were used for training and testing the three models. 
In terms of performance indices, the results demonstrated 

Fig. 9  Taylor diagrams of 
MARS, LSSVR and M5-tree 
models for testing phase

Fig. 10  Violin plot of MARS, LSSVR and M5-tree models for testing phase
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the effectiveness of the three models in reproducing the 
nonlinear behavior of lake level fluctuation.

• In both models with and without the periodic component 
introduced as input data, MARS performed slightly bet-
ter than the LSSVR and M5-Tree model tree.

• In general, P-MARS indicated better forecast accuracies 
at input combinations VIII, mainly due to the capability 
of the application of multivariate adaptive regression, 
which could capture the complicated nonlinear relation-
ship.

• Modeling using a single input (I) yielded the worst result 
in the estimation with M5-tree.

• The periodic component feature was embedded and 
evaluated inside the modeling's input datasets, and the 
results revealed that integrating this component data 
was useful in offering a detailed intuition into the pro-
cess of anticipated monthly lake levels.

Where resources are not available to operate compli-
cated physically based models, the proposed heuristic 
regression techniques may be useful practical options 
for improved monthly lake level forecasts. In operational 
water level forecasting, the proposed methods could be 
valuable supplements to physically-based models. Under-
standing the causes of water level fluctuations and the 
factors influencing them can help in lake conservation 
and management. It is critical to keep water levels in 
Lake Michigan at a healthy level for the ecosystems and 
marshes that surround them. Effective strategies for sus-
tainable integrated water resources management should be 
implemented to preserve ecological integrity and assure 
the water release and storage capacity of the Great Lakes 
under the pressure of unpredictable climate variables.
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