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Abstract

A range of chronic diseases have a significant influence on each other and share common risk factors. Comorbidity,

which shows the existence of two or more diseases interacting or triggering each other, is an important measure for

actuarial valuations. The main proposal of the study is to model parallel interacting processes describing two or more

chronic diseases by a combination of hidden Markov theory and copula function. This study introduces a coupled

hidden Markov model with the bivariate discrete copula function in the hidden process.

To estimate the parameters of the model and deal with the numerical intractability of the log-likelihood, we use a

variational expectation maximization (VEM) algorithm. To perform the VEM algorithm, a lower bound of the model’s

log-likelihood is defined, and estimators of the parameters are computed in M-part. A possible numerical underflow

occurring in the computation of forward-backward probabilities is solved.

The simulation study is conducted for two different levels of association to assess the performance of the proposed

model, resulting in satisfactory findings. The proposed model was applied to hospital appointment data from a private

hospital. The model defines the dependency structure of unobserved disease data and its dynamics. The application

results demonstrate that the model is useful for investigating disease comorbidity when only population dynamics over

time and no clinical data are available.

Keywords

Coupled Hidden Markov Model, Discrete Copula, Dependency in Hidden Process, Comorbidity, Chronic Diseases

Introduction

Comorbidity is a medical term that refers to when a patient has two or more diseases concurrently. A range of chronic
diseases have a significant influence on each other and share common risk factors. Morbidity is more likely to result from
complications caused by comorbid conditions than from the primary illness itself.1 It can refer to a variety of chronic diseases
that are highly interconnected and share risk factors.2,3

Statistical models have been used to identify patterns of co-occurrence of diseases.4–6 These studies, however, address
the question of which comorbidities frequently co-occur but do not model their progression. Comorbidities are represented
as networks using dynamic structural equation models.7,8 or deep diffusion processes.9 The studies provide information on
which diseases co-occur but not on the dynamics of diseases. Bayesian networks have been used to examine comorbidities
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2 Statistical Methods in Medical Research XX(X)

and their temporal relationships.10–12 These works, which are based on a variety of different clinical and demographic data
about patients, provide only a brief understanding of the underlying disease states representing the illness development. The
interaction among diabetes and chronic liver disease under Metformin treatment is modeled by a coupled hidden Markov
model (CHMM) with a personalized, non-homogeneous transition mechanism.13 The model has a fixed number of hidden
states but a greater number of states may be more informative about the progression of comorbidity. Also, the model is
applied to clinical and demographic data, however the application of the model to restricted administrative data may be
limited.

Comorbidity is used in studies employing HMM and its extensions.14–16 However, Markov models with memoryless
property imply that a patient’s current state is distinct from their future trajectory. As a result, HMM-based models are
unable of adequately explaining the variability in individuals’ progression trajectories, which is frequently caused by their
varied clinical histories or chronologies (order and timing) of clinical events. This is a critical shortcoming in models of
survival analysis for complex chronic diseases with numerous morbidities.17

Our aim is to investigate these unknown shared factors that contribute to the development of these diseases. We are
particularly interested in estimating the probability of chronic disease comorbidity, or how the presence of one disease may
affect the likelihood of being exposed to another.

The theoretical set up in this study is mainly to combine hidden Markov and copula theories describing the probabilistic
joint behavior of two or more chronic diseases. We use a coupled hidden Markov model (CHMM) as the fundamental model
in this study to capture the comorbidity phenomenon by combining the hidden processes underlying chronic diseases. The
causal nature of disease-disease interactions can be represented using dynamic networks, in which the strength of the edges
connecting nodes varies over time in accordance to the joint copula distribution. The underlying network dynamics are
frequently unknown, and what we perceive are sequences of observed events propagating across the network. To infer latent
network dynamics from observed sequences, one must consider both when and what events occurred in the past, as both
provide insight into the mechanisms behind disease generation and progression.

We propose a novel CHMM with copula accounting for interaction between diseases in the latent space. Since the
hidden process of the CHMM is defined on a discrete state space, the probability of joint hidden states is modeled by
bivariate discrete copula proposed by Geenens18. Sklar’s theorem states that the copula of a discrete random vector is not
completely identifiable, resulting in serious inconsistencies. Therefore, Geenens18 develops the rejuvenating approach of
copula modeling for discrete data based on Yule’s19, Goodman and Kruskal’s20, and Mosteller’s21 conceptions.

Several research have used copula theory to examine competing risks and comorbidity. While competing risks are
investigated using a variety of copula-based approaches,22–26 there is only one study examining chronic disease comorbidity
using a copula-based approach.27 To our knowledge, no study has been conducted that uses a combination of any type of
HMM and copula function to investigate comorbidity or competing risks.

The proposed model is an incomplete data model for which the expectation maximization (EM) algorithm28 is the
most often used probability maximization technique. However, the model’s exact inference creates a number of computing
problems. In this study, we define a probabilistic model in general form when the number of underlying hidden chains
exceeds two, resulting in a large number of parameters. We employ variational approximation to make the expectation (E)
step of the EM algorithm tractable in terms of computation. The resulting variational EM (VEM) seeks to maximize the
lower bound on the log-likelihood. While VEM is initially formally described in machine learning applications such as Saul
and Jordan29, it is now frequently deployed and generalized in a variety of ways. Comprehensive summary of studies can be
found in in the works of Jaakkola30, Blei et al.31, Wainwright and Jordan32. Ormerod and Wand33 gives also an explanation
of VEM in statistical terms.

In this study, we present theoretical advances for defining a probabilistic model and developing the necessary inference
to implement the model. In particular, we compute the complete data log-likelihood (CDLL) and its lower bound, derive
forward-backward probabilities and conditional expectations required for the E-step, and derive estimators for the model
parameters required for the maximization (M) step. We propose an approximate inference algorithm based on a variational
approach. A simulation study is performed to assess the performance of the proposed method, and an application to the
detection of comorbidity levels in heart diseases and hypertension is presented. In the study by Oflaz et al.35, a latent Markov
model with covariates influencing hidden states is used to examine the progression of ischemic heart disease (IHD). Extracted
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Oflaz et al. 3

information on background factors leading to or influencing disease onset or progression is helpful for identifying hidden
comorbidity levels of IHD and hypertension.

The proposed model takes into account time influence of the disease improvement on the patient in both univariate
and bivariate forms; exposes the factors having impact on the diseases both in univariate and bivariate forms; controls the
dependence structure in bivariate dimensions.

Interaction among diseases is implemented on limited administrative time series data not clinical data. It is critical to note
that the majority of studies on competing risks rely on data from detailed clinical observations. However, a lack of data,
particularly clinical data on individuals, may make classical statistical models of competing risks difficult to use. This could
be due to restricted access to hospital data or a dearth of information on a particular cause or geographic location. As a result,
it is necessary to develop alternative statistical models for sparse data.

Comorbidity of diseases have various etiological models, where risk factors have an influential role.34 For example, in the
associated risk factors model, risk factors for one disease are correlated with risk factors for another, increasing the likelihood
of the diseases occurring concurrently. On the other hand, in the heterogeneity model, disease risk factors are not correlated,
but each is capable of causing diseases associated with the other risk factor among diseases. The proposed model can be
applicable to study various pathways to comorbidity, assuming that these interactions happen in unobserved process.

Extensions of hidden Markov model

A strength of the HMM is that it can be readily extended to accommodate a variety of applications. In the literature, a linear
combination of the prior estimate of transition matrix and the empirical transition matrix is established by Siu et al.36, Monte
Carlo Markov chain is used to perform Bayesian inference and evaluate the posterior distribution of transition matrix.37 The
bivariate HMM have been developed to study the dependency between discrete and continuous observations.38

There are established approaches to model interaction of several processes by combination of two or more HMMs.
Hierarchical HMM is a model where each hidden state is an HMM as well, where children states depend on parent states.39

Factorial HMM splits the hidden state into multiple variables that are merged at output, and each state has its own transition
matrix.40 Event-specific HMMs developed by Kristjansson et al.41, aims to model a class of weakly connected time series in
which only the onset of events are coupled in time. The representation capacity of event-coupled HMMs is clearly constrained
by the restrictive structure, which is designed for a relatively narrow class of applications. Coupled HMM factor HMM to
many chains in which the present state of each chain is dependent on the prior state of all chains.42 Kwon and Murphy43

models traffic velocities by using CHMM. Clearly, the completely coupled architecture developed by Brand et al.42 is the
most powerful in terms of representing interactions between many sequences. This framework can be used to naturally model
a wide variety of applications.44

Our model is distinguished by the fact that we combine interacting processes via a copula function, implying that joint
hidden states follow a predefined joint probability. Other coupled HMMs with a variety of architectures combine hidden
chains through the use of conditional probabilities; that is, hidden states are connected to preceding states following Markov
property, and their distribution is defined solely by transition state probabilities. Assuming that hidden states are dependent
on one another and have a joint probability distribution, and as we cannot observe hidden states directly, using a copula to
represent the dependence structure is the optimal choice. Copulas have evolved into one of the most widely used statistical
tools for describing, analyzing, and modeling the dependence of random variables.

There are several studies on integrating copula with a HMM. To construct a dependency between the intensity levels of the
various modalities, a Gaussian copula is utilized, that is, marginal distributions of those are linked by copula.45 Another way
of merging two theories is importing hidden Markov chain in the copula parameter.46 Instead of the assumption of conditional
independence between observed variables and hidden states researches suggest studying the dependence of observed values
on unknown states via copula.47 Also, there is a copula-based HMM of cylindrical time series, where a mixture of copula-
based cylindrical densities approximates the distribution of cylindrical data, the parameters of which rely on the development
of a latent Markov chain.48 Copula is used to construct the dependence structure of the Markov process by providing copula
representation of the Markov property.49 To our best knowledge, there is no study that combines hidden chains using the
copula function in the context of a coupled HMM.
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4 Statistical Methods in Medical Research XX(X)

Copula Modeling for Discrete Random Variables

Copulas are utilized to extract the dependency structure of a multivariate distribution. We can construct any multivariate
distribution by providing the marginal distributions, F and G, and its copula separately. Copulas naturally arise in statistical
modeling as a result of the well-known Sklar’s theorem50. When both F and G are continuous, Sklar’s Theorem indicates
that the various objects presented in definition of copula50 coincide and the set of ”sub-copulas”, A, consists of the unique
copula associated with P(X ≤ x, Y ≤ y)51. When F and G are not continuous, their inverses exhibit plateaus; also, a copula
representation for discrete functions exists in A, but it is no longer unique, resulting in an identifiability issue.

Due to issues with the copula function’s unidentifiability for discrete random variables, Geenens18 proposes the bivariate
discrete copula for count data. The existence and uniqueness of the proposed copula probability mass function is established.

In this study, the probability of joint hidden states is modeled by bivariate discrete copula, in particular we use bivariate
Binomial copula. With the constant trial numbers n, the dependency structure of a bivariate Binomial is determined solely
by the odds ratio parameter ω, and the associated Binomial(n)-copula is a one-parameter model. It is a ((n+ 1)× (n+ 1))-
discrete distribution with uniform margins.

For example, if n = 2, the bivariate Binomial copula distribution is defined as follows:

p̄ =
1

3


ω(ω+1)

ω2+ω+1+
√

ω(ω+2)(2ω+1)

√
ω(ω+2)(2ω+1)−3ω

(ω−1)2
ω+1

ω2+ω+1+
√

ω(ω+2)(2ω+1)√
ω(ω+2)(2ω+1)−3ω

(ω−1)2
ω2+4ω+1−2

√
ω(ω+2)(2ω+1)

(ω−1)2

√
ω(ω+2)(2ω+1)−3ω

(ω−1)2

ω+1

ω2+ω+1+
√

ω(ω+2)(2ω+1)

√
ω(ω+2)(2ω+1)−3ω

(ω−1)2
ω(ω+1)

ω2+ω+1+
√

ω(ω+2)(2ω+1)

 , (1)

where ω is the odds ratio of the initial bivariate Bernoulli defined as

ω =
P(X = 0, Y = 0)P(X = 1, Y = 1)

P(X = 1, Y = 0)P(X = 0, Y = 1)
. (2)

For ω ̸= 1. For ω = 1, p̄ is the (3 × 3)-independence copula p.m.f. One also has

Υ =
ω2 − 1

ω2 + ω + 1 +
√
ω(ω + 2)(2ω + 1)

as Yule’s coefficient for this copula p.m.f., which is Υ = −1 for ω = 0 and Υ = 1 for ω = ∞. Thus, this family of Binomial
copulas is exhaustive since it accommodates all values of Yule’s coefficients between −1 and 1.

Coupled Hidden Markov model with Copula

To be able to explain the joint behavior of two discrete time series variables, we combine two hidden Markov chains by
copula function. For three or more time series variables, we suppose that there are identical number of hidden chains and
we combine each pair of hidden chains by copula function. The proposed CHMM with discrete bivariate copula function
accounts for dependency between diseases, it is a system of multiple interacting processes. The interaction between variables
are considered in the hidden space rather than the observation space.

A series of observations Xi = (Xi,t) is supposed to be the total number of patients with disease i, (i = 1, ..., I), observed
at time t, t = 1, ..., T . We denote hidden process for disease i as (Si) = (Si,1, Si,2, ..., Si,T ), where Si,t takes Qi different
values, Qi ∈ N. In this setting, the joint hidden process, denoted as (St)t or (St), with St = (S1,t, ..., SI,t), consists in∏I

i=1 Qi possible values.

Emission distribution or state-dependent conditional distribution Φi,q(Xi,t) might be an arbitrary discrete distribution

Φi,q(Xi,t) = P(Xi,t|Si,t = q).

(a) Binomial emission distribution: We assume that the observed variable Xi,t conditional on state Si,t follows Binomial
distribution with probability of success, pi,q , i.e. the probability of having disease i conditional on state q. Therefore,
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Oflaz et al. 5

Figure 1. Directed graph of CHMM with copula function with two underlying Markov chains.

Φi,q(Xi,t) is defined for each disease i as follows:

Φi,q(Xi,t) = P(Xi,t = xi,t|Si,t = q) =

(
ni

xi,t

)
p
xi,t

i,q (1− pi,q)
ni−xi,t , xi,t = 0, 1, 2, ..., ni,

where ni is the total number of trials for disease i.

(b) Poisson emission distribution: We assume that the observed variable Xi,t conditional on hidden state Si,t follows
Poisson distribution with the rate parameter, λi,q . Therefore,

Φi,q(Xi,t) = P(Xi,t = xi,t|Si,t = q) =
λ
xi,t

i,q e−λi,q

xi,t!
, xi,t = 0, 1, 2, ...,

where λi,q is the parameter representing average number of patients with disease i conditional on state q.

Hidden Markov Chain

We assume that the joint hidden process (St) fulfills a Markov property. Hidden dependency structure for two diseases is
represented in Figure 1. The set of state of all diseases (Si,t)i is a Markov chain and the edges between the state of all
diseases at a given time t for all individuals allows us to consider disease dependence.

We assume that the transition probabilities of the joint hidden process (St) arise from the product of two terms (both
supposed to be constant along time): one accounting for the transitions within each disease and one accounting for the
dependency between diseases by the discrete bivariate copula function defined as follows:

P(St = r|St−1 = q) =: Pqr ∝ πq,r

∏
i

∏
j ̸=i

max(p̄(Si,Sj)), (3)

where

(i) π is a Q×Q transition matrix (each row sums to one) and q (resp. r) indicates the joint hidden state of the comorbidity
of diseases;

(ii) the dependency relationship among the diseases is determined by the copula function, in particular, p̄ = p̄(Si,Sj) is
defined by Equation 1 for Binomial copula.
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In this model, π stands for the transitions within the comorbidity levels of diseases, while copula function introduces the
dependency between diseases.

We further assume that the initial joint hidden process S1 = (Si,1)i has distribution

P(S1 = q) ∝ mq

∏
i

∏
j ̸=i

max(p̄(Si,Sj))

where mq is an initial distribution of the states 1 ≤ q ≤ Q, whose probability does not change across diseases. However,
the model can be extended to include the assumption of varying transition probabilities across diseases; consequently, each
hidden chain will have its own transition probability matrix and initial state probabilities.

The proposed method models the dependency of hidden chains by joint distribution of hidden states represented by discrete
bivariate copula, whereas CHMM proposed by Brand et al.42 couples chains by modeling the causal relationships between
their hidden state variables with matrices of conditional probabilities.

The distribution of the hidden process S is defined as

P(S) =
1

Z

∏
i,q

∏
j ̸=i

[mq max(p̄(Si,Sj))]
χq
i,1×

×
∏

t≥2,q,r

∏
i

π
χq
i,t−1χ

r
i,t

q,r

∏
j ̸=i

max(p̄(Si,Sj))
χq
i,t−1,χ

r
i,t ,

(4)

where Z is a normalizing constant and χr
i,t is an indicator function, χr

i,t = 1{Si,t=r}.

Therefore, the joint probability for the sequence of states and observations is defined as follows:

P(X,S) =
1

Z

∏
i,q

∏
j ̸=i

[mq max(p̄(Si,Sj))]
χq
i,1×

×
∏

t≥2,q,r

∏
i

π
χq
i,t−1χ

r
i,t

q,r

∏
j ̸=i

max(p̄(Si,Sj))
χq
i,t−1,χ

r
i,t×

×
∏
i,r,t

Φi,r(Xi,t)
χr
i,t .

(5)

It follows that the CDLL function is

logP(X,S) =
∑
i,q

χq
i,1 logmq +

∑
i

∑
t≥2,q,r

χq
i,t−1χ

r
i,t log πq,r

+
∑
i,r,t

χr
i,t

∑
j ̸=i

logmax(p̄(Si,Sj)) +
∑
i,r,t

χr
i,t log Φi,r(Xi,t)− logZ.

(6)

Variational Expectation Maximization Algorithm

In the case of CHMM, where several hidden sequences are supposed to be dependent, the complexity of E-step becomes
numerically inconvenient when number of parameters is too large. When both the number of chains and the number of states
are small, that is, when K = QI is less than a few tens, the global model can be viewed as a single HMM and the E-step can
be performed via forward-backward recursion with complexity O(TK2).52 Therefore, we use a variational approximation
of the E-step of the EM algorithm. As in HMM, the M-step for CHMM is straightforward and tractable.

The VEM algorithm maximizes a lower bound of the log-likelihood. In the study, we mainly rely on the approach of
Wang et al.52 and follow the lines of Jaakkola30, Wainwright and Jordan32 to derive the variational approximation of the
log-likelihood.

For any distribution P̃ , we have

logP(X) ≥ logP(X)−KL[P̃(S)|P(S|X)]

= Ẽ logP(S,X)− Ẽ log P̃(S)

=: J (X, θ, P̃),

(7)
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where Ẽ = EP̃ and KL denotes the Kullback-Leibler divergence. The maximization of CDLL turns into the maximization
of the lower bound J (X, θ, P̃) with respect to the parameter θ. As EM algorithm, VEM includes two steps:

VE-step: compute the approximate conditional distribution P̃, given the observed data and the current value of the
parameter θh, as

P̃h+1 = argmax
P̃

J (X, θh, P̃) = argmin
P̃

KL[P̃(S)|P(S|X; θh)].

M-step: maximize the updated lower bound with respect to the set of parameters as

θh+1 = argmax
θ

J (X, θ, P̃h+1).

The accuracy of this approximation depends mainly on the class of approximate distributions within which P̃ is searched
for. Here we employ the variational methods for graphical models proposed by Saul and Jordan53 and modified for Coupled
HMM by Ghahramani and Jordan54. The approximation bases on the setting P̃ to be a product of the independent Markov
chains, that is

P̃(S) =
∏
i

P̃(Si), where P̃(Si) =
∏
i

P̃(Si,1)
∏
t≥2

P̃(Si,1|Si,t−1). (8)

Then we have
P̃(Si) =

1

Z̃i

(∏
q

(mqh
q
i,1)

χq
i,1

)∏
t≥2

(∏
q,r

(πq,rh
r
i,t)

χq
i,t−1χ

r
i,t

)
, (9)

where Z̃i is the normalizing constant that ensures that P̃(Si) equals one. The variational parameters hl
i,t can be thought of

as correction terms for a Markov chain with parameters (m, π).
Let τ ri,t = Ẽ(χr

i,t) and Λqr
i,t = Ẽ(χq

i,t−1χ
r
i,t) denote the conditional expectations given the observations Xi,t. According

to these, we define the lower bound as shown in Theorem 1.

Theorem 1. Given observed random variable Xi,t, Xi,t ∈ N, unobserved random variable Si,t taking Q different values,

Q ∈ N, i, j = 1, ..., I , t = 1, ..., T , r = 1, ..., Q the lower bound J (X, θ, P̃h) of complete data log-likelihood logP(X,S) is

defined as

J (X, θ, P̃h) =
∑
i,r,t

τ ri,t

(
log Φi,r(Xi,t) +

∑
j ̸=i

logmax(p̄(Si,Sj))− log hr
i,t

)
+
∑
i

log Z̃i − logZ.
(10)

Proof. Proof is provided in Supplementary Material.

Based on these, we define analytically the optimal variation parameter in the E-part with the conditions for forward and
backward algorithms.

Theorem 2. Given observed random variable Xi,t, Xi,t ∈ N, unobserved random variable Si,t taking Q different values,

Q ∈ N, i, j = 1, ..., I , t = 1, ..., T ,r = 1, ..., Q, the optimal value for the variation parameter hr
i,t of the lower bound

J (X, θ, P̃h) is defined as

hr
i,t = Φi,r(Xi,t)

∏
j ̸=i

max(p̄(Si,Sj)).

Proof. Proof is provided in Supplementary Material.

The conditional moment, which depend on the normalizing constant Z̃i, are then computed using an independent forward-
backward recursion for each disease.

Forward recursion: set F q
i,1 ∝ mqh

q
i,1 for t ≥ 2 and compute

F r
i,t ∝

∑
q

F q
i,t−1πq,rh

r
i,t.
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Backward recursion: τ ri,T = F r
i,T holds and, for 1 ≤ t ≤ T − 1, compute

Gr
i,t+1 =

∑
r

F q
i,tπq,r,

∆q,r
i,t = πq,r

τ ri,t+1

Gr
i,t+1

F q
i,t,

τ qi,t =
∑
r

∆q,r
i,t .

The derivation of M-part for transition and initial probabilities is done with respect to the proposed framework. In this
respect, we define the M-part derivation under the assumptions of Binomial and Poisson distributions separately.

Theorem 3. Given observed random variable Xi,t, Xi,t ∈ N, unobserved random variable Si,t taking Q different values,

Q ∈ N, i, j = 1, ..., I , t = 1, ..., T ,r = 1, ..., Q, EM estimates of transition and initial probabilities are, respectively,

π̂q,r =

∑
i τ

r
i,t+1∑

r

∑
i τ

r
i,t+1

, (11)

m̂q =

∑
i τ

r
i,1∑

r

∑
i τ

r
i,1

. (12)

Proof. Proof is provided in Supplementary Material.

Theorem 4. Given observed random variable Xi,t following Binomial (n; pi,q) distribution, Xi,t ∈ N, unobserved random

variable Si,t taking Q different values, Q ∈ N, i = 1, ..., I , t = 1, ..., T ,q, r = 1, ..., Q, the EM estimate of Binomial emission

distribution parameter pi,q with fixed number of trials n is

p̂i,q =

∑
t

∑
r B

q,r
i,t Xi,t

n
∑

t

∑
r B

q,r
i,t

, (13)

where

Bq,r
i,t = πq,r

τ ri,t+1

Gr
i,t+1

F q
i,t.

Proof. Proof is provided in Supplementary Material.

Theorem 5. Given observed random variable Xi,t following Poisson (λi,q) distribution, Xi,t ∈ N, unobserved random

variable Si,t taking Q different values, Q ∈ N, i = 1, ..., I , t = 1, ..., T ,q, r = 1, ..., Q, the EM estimate of Poisson emission

distribution parameter λi,q is

λ̂i,q =

∑
t Xi,t

τr
i,t+1

Gr
i,t+1

F q
i,t∑

t

τr
i,t+1

Gr
i,t+1

F q
i,t

. (14)

Proof. Proof is provided in Supplementary Material.

Estimation of the Odds Ratio

According to Wang et al.52, estimation of dependency function within the M-step result in a poor estimation of the
dependency function.The study suggests to use grid search of parameters and select the ones that minimize weighted Residual
Sum of Squares (RSS). Thus, we use the weighted RSS to select the optimal odds ratio, ω, for copula probabilities defined
as follows:

RSS =
∑
i,r,t

τ ri,t(xi,t − µi,r)
2, (15)

where µi,r = λi,r and µi,r = npi,r for Poisson and Binomial emission probabilities, respectively.
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Algorithm and Numerical Stability

The proposed model is presented in algorithm to be more elaborated. The algorithm includes VE-part in the steps 3-6, and
M-part in the step 7.

Algorithm 1 VEM algorithm of CHMM with bivariate discrete copula.

1: Set initial values for initial state probabilities, mr, transition probabilities, πq,r, and probabilities of having disease i
conditional on state r, pi,r

2: Set or calculate ω for each pair of diseases
3: Calculate max(p̄(Si,Sj)) for each pair of diseases. Calculate emission probabilities, Φi,r(Xi,t), for each disease i.

Then, for each disease i calculate
hr
i,t = Φi,r(Xi,t)

∏
j ̸=i

max(p̄(Si,Sj))

4: Calculate forward probabilities: recursive calculation with initial F q
i,1 ∝ mqh

q
i,1 with normalized mq

5: Calculate backward probabilities using obtained forward probabilities
6: Normalize obtained posterior probabilities and calculate the matrix Λqr

i,t using posterior probabilities
7: Calculate/update parameters mr, πq,r, pi,r based on M-part formulas
8: Calculate weighted RSS value for each disease
9: Calculate criteria of convergence.

10: if criteria less than the threshold then
11: stop the algorithm, return the estimated parameters
12: else
13: update parameters and do steps 3-9
14: end if

The most frequently encountered problem in computing forward-backward probabilities, numerical underflow of the
calculated probabilities, is resolved by transforming the functions used in the algorithm; additionally, scaling the observed
values helps overcome numerical underflow. Precision is required when manipulating and executing arithmetic on small
numbers. When possible, it is recommended to work with logarithms of probabilities. In particular, the “log-sum-exp” trick
is useful when dealing with numerical underflow,31,55

log

[∑
i

exp(yi)

]
= α+ log

[∑
i

exp(yi − α)

]
.

The constant α is typically set to maxi yi. This ensures that common computations in variational inference processes are
numerically stable.

Comorbidity by Simulation

We conduct a simulation study which requires specific modeling to generate the comorbidity to capture the proposed model.
Data sets with an odds ratios of 0.85 and 8, which represent different correlation structures between the variables, are
simulated.

For odds ratio of 1, hidden states are independent. This scenario is inapplicable to the proposed model, as it is intended
to model dependencies between hidden states. Additionally, when ω = 1, the joint probability of any two states is equal to
1/m, where m is the number of states. In this situation, the CDLL of the model does not change to independent HMMs
or classical CHMM, so there is no theoretical connection between the proposed model and known hidden Markov-based
models.

When ω is negative, i.e., outside of the range, the joint probabilities are outside of the [0, 1] range; consequently, further
calculation steps are not possible, and the model cannot maximize CDLL.

Simulation set up for hidden states: Firstly, consider the Bernoulli distribution with a specified probability of success,
0 and 1 represent statuses of ”no disease” and ”having disease”, respectively. Let the number of trials, n, be the number of
medical check up or diagnostic analysis at time t. We assume that n = m− 1, where m is the number of hidden states. For
each time point we generate vector of Bernoulli values (Figure 2, Step 1). Then, the outcomes are aggregated, so we get total
number of successful trials, i.e. number of diagnostic analysis resulting in having disease, at time t, t = 1, . . . , T . Therefore,
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10 Statistical Methods in Medical Research XX(X)

Figure 2. Simulation set up of hidden states for two diseases: generation and aggregation of Bernoulli values. For illustration
purpose, only 1 out of 8 possible pairs is displayed.

for two diseases, we generate two hidden chains with states following Binomial(n, p) distribution (Figure 2, Step 2). Thus,
we obtain pair of generated values, (S1t, S2t), at time t. We suppose that (S1t, S2t) follows Binomial copula distribution
with predefined odds ratio parameter ω. Number of joint states over time period is arranged to be proportional to the joint
probability of states, defined in Binomial copula matrix (Equation 1). Additionally, hidden chains should follow the Markov
property, thus, to check whether the generated sequences follow the Markov property, chi-square based test proposed by
Anderson and Goodman56 is conducted. verifyMarkovProperty function from markovchain package57 is used. We reorder
the pairs of hidden states so that the sequences follow Markov property (Figure 3, Steps 3 and 4). If the high proportion of
sequences satisfy the Markov property, we do not drop non-Markov sequences and suppose that established simulation is
optimal.

We generate dependencies between the hidden chains using a bivariate binomial copula, then observations dependent on
hidden states are generated from a predefined distribution.

Simulation design steps for three state model:

S1: Calculate Binomial copula probabilities given a predefined odds ratio (Equation 2). For n = 2, Binomial copula
distribution is a 3× 3-matrix (Equation 1). The rows and columns of the matrix represent 0, 1, 2 number of successful
trials for disease 1 and disease 2, respectively. The calculated Binomial copula probabilities represent the true
distribution of the joint hidden states.

S2: Generate joint states as explained in simulation set up for hidden states. The frequency of the generated joint states
and Binomial copula probabilities given in Equation 1 are compared based on bias and mean square error (MSE),

Bias =

∑N
i=1(xi − yi)

N
,

MSE =

∑N
i=1(xi − yi)

2

N
,

where xi is a true probability, yi is a frequency of the generated joint states, i = 1, . . . , N.
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Oflaz et al. 11

Figure 3. Simulation set up of hidden states for two diseases: reorder of the generated pairs.

S3: Calculate transition probability matrices for each hidden chain. Aggregate probabilities of corresponding states and
normalize by the total value in the corresponding row. Thus, comorbidity transition matrix of two diseases is obtained.

S4: Initial probability of the generated hidden states is defined as the frequency of the generated states at time t = 1.

S5: Finally, generate observations from Poisson distribution given λi parameter conditional on hidden state for each disease
i.

To test whether the CHMM Copula model optimally fits the simulated data, estimated transition and initial probabilities,
λi parameters are compared with the parameters given in the simulation set up.

Model Performance on the Simulated Data

The three state hidden Markov chains representing two diseases are generated from Binomial copula distribution according to
the simulation design. The order of the generated Bernoulli trials for each disease is such that the joint hidden states follow
the Binomial copula and the sequence of hidden states for each disease follows the Markov property. For each disease,
observed values were generated using a Poisson distribution with hidden state-dependent rate parameters. For odds ratios of
0.85 and 8, two data sets were simulated 500 times. There are 120 time points for an odds ratio of 0.85, and 99 for an odds
ratio of 8. To determine if the generated hidden states follow the Binomial copula distribution, bias and MSE were computed.
The calculated error metrics are close to zero for both odds ratio. In addition, the Markov property was examined using a
chi-square test.

According to the chi-square based Markovian test, 98.6% of the generated hidden states for disease 1 and 99.4% for
disease 2 satisfy the Markov property for an odds ratio of 0.85, while 87% of the generated hidden states for disease 1 and
93% for disease 2 satisfy the Markov property for an odds ratio of 8. According to the results of statistical tests, a large
proportion of the 500 generated observations for both odds ratios and both diseases are stationary (Table 1).

To distinguish estimated values of the generated data set from the estimated values by model, we call them true parameters
of the generated data, see Table 2.

Table 1. Proportion of stationary sequences among the 500 generated observations. Tests are conducted with significance level of
0.05. KPSS test for odds ratio of 8 also includes the results for significance level of 0.01.

ω = 0.85 ω = 8
ADF KPSS PP ADF KPSS (0.05) KPSS (0.01) PP

Disease 1 99.2% 90.8% 100% 94% 61.4% 88% 100%
Disease 2 98.8% 94.4% 100% 93.8% 68.2% 88.6% 100%
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Table 2. True values of the generated hidden states and observations for odds ratios of 0.85 and 8.

ω = 0.85 ω = 8

Transition matrix

0.354 0.464 0.182
0.257 0.469 0.273
0.171 0.455 0.374

 0.858 0.124 0.018
0.090 0.794 0.116
0.018 0.097 0.885



Initial state probabilities (0.5 0.4 0.1) (0.95 0.05 0)

Emission distribution
rate parameter for disease 1 (8 9 9.5) (8 9 9.5)

Emission distribution
rate parameter for disease 2 (7 8 8.5) (7 8 8.5)

Binomial copula p.m.f.

0.10 0.11 0.12
0.11 0.11 0.11
0.12 0.11 0.10

 0.218 0.088 0.027
0.088 0.158 0.088
0.027 0.088 0.218



To assess the performance of the proposed model, 50 simulated data sets with the same parameters were used. Since the
estimation of the parameters is an iterative process, we need to decide on the optimal iteration number to capture the best
estimated results. Models with identical starting parameter settings but a varied number of inner iterations (70, 100, 150,
200, 250) were applied to the simulated data sets.

The true values of the simulation design parameters are compared to the model’s estimated parameters using bias and
MSE metrics. For clear demonstration of the model results on the simulated data, bias and MSE of the estimated parameters
for each hidden state are calculated (see Table 1 and Table 2 in Supplementary Materials), and then mean of the values are
displayed in Figure 4. Generally, for any number of iterations, the calculated bias and MSE between the estimated and true
parameters of the simulation designs with an odds ratio of 0.85 and 8 are small but for some cases we obtain moderately
larger values. Having 16 parameters we aim to minimize the loss of the whole model while minimizing RSS, it is challenging
to minimize the bias of all parameters. We assume that the general results of the simulation study are acceptable; however, it
is difficult to find well-defined initial parameter settings that produce unbiased results due to the large number of parameters.
The mean of MSE of the estimated and true rate parameters for both diseases of the simulated data with an odds ratio of 8
occasionally exceeds one. The values of error metrics varies depending on the initial and transition probabilities, as well as
the emission distribution rate parameters.

The proposed model with 100 or 150 inner iterations number display the lowest bias and MSE values for parameters of
the simulated data with an odds ratio of 0.85 (Figures 4a and 4c), the model with 100 iterations is the most optimal for data
with an odds ratio of 8 (Figures 4b and 4d).

Additionally, the weighted RSS is used to evaluate the performance of models with varying iteration numbers. The
weighted RSS exhibits the lowest value after 150 and 100 iterations for odds ratios of 0.85 and 8, respectively (Figures
4e and 4f). The weighted RSS values support the most optimal number of iterations for acquiring parameters close to their
true values on average.

For simulated data with an odds ratio of 0.85 indicating a negative and close to zero Yule’s coefficient of association of
-0.054, as well as for data with an odds ratio of 8 indicating a positive Yule’s coefficient of association of 0.57, CHMM with
discrete copula exhibits a satisfactory goodness of fit.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Mean of bias (dashed line) and MSE (solid line) of initial probabilities (left) and transition probabilities (right) for odds ratio
of: a) 0.85 b) 8; mean of bias (dashed line) and MSE (solid line) of emission parameters for disease 1 (left) and disease 2 (right) for
odds ratio of: c) 0.85 d) 8; weighted RSS values for odds ratio of: e) 0.85 f) 8.

Real Life Application

In this section of the study, we present the applicability of the proposed method onto the real data set. The data set includes
daily information relating to the patients with heart disease and the hypertension collected from 49,713 patients from
January 2015 to December 2020. Data set is authorized by a private hospital in Turkey, the observations are provided with
confidentiality condition.

The illness codes of raw data set were classified into two categories: heart disease and hypertension. The repeated rows
have been removed. The data contains information on integer age and gender, indicator variables for ever-diagnosed heart
disease and hypertension since 2015, whether an individual was admitted to a hospital in a given month, and the frequency
with which the patient presented to the hospital with heart disease or hypertension. Once a patient has been diagnosed with
a disease, the value for that disease remains 1 for the remainder of the column. As the prehistory of individuals before 2015
is unknown, it is assumed that patients who do not appear in the system for the chosen period did not have a disease until
their first hospital visit. After cleaning and transforming panel data, it was aggregated to create time series data by counting
patients with heart disease or hypertension in each month from January 2015 to December 2020.

The total number of patients with heart disease or/and hypertension was analyzed using time series analysis and
exploratory data analysis. Figures 5a and 5b depict time series plots of the total number of patients with a specific disease
divided by gender. Both diseases have an increasing trend due to assumptions that if a patient is reported to have a particular
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(a) (b)

(c) (d)

Figure 5. The number of patients by gender from January 2015 to December 2020 with: (a) heart disease, (b) hypertension. The
number of hospital visits by gender from January 2015 to December 2020: (c) heart disease, (d) hypertension.

disease, he will be assumed to have that disease until the study is completed. For both diseases, male patients are increasing
faster than female patients over time.

Figures 5c and 5d show the total number of hospital appointments for both diseases by gender. Hospital admissions for
heart disease or/and hypertension follow a seasonal pattern. Females visit the hospital less frequently than males (check
descriptive statistics), while hospital visits for patients with hypertension are comparable for both genders.

(a) (b)

Figure 6. Heart disease and hypertension correlation plots and histograms: (a) patients number (b) number of hospital visits.

As illustrated in Figures 6a and 6b, the number of patients with heart disease and hypertension, as well as patient hospital
admissions, are highly linearly correlated. For both diseases, the total number of patients and their hospital visits follow a
left-skewed distribution.

We calculated the average time interval between disease occurrences. When hypertension occurs first, it takes an average
of 12.96 months to be diagnosed with heart disease later; however, it takes an average of 18.88 months to be diagnosed with
hypertension following heart disease. There are 4236 patients who develop heart disease after hypertension and 3108 patients
who develop hypertension following heart disease.

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of total number of patients over 72
months and those with the second-order difference for both diseases are represented in Figure 7. Time series of patients
number for both diseases are nonstationary, have an increasing trend.
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(a) (b)

(c) (d)

Figure 7. ACF and PACF plots of the number of patients over 72 months: a) heart disease b) heart disease (second-order
difference) c) hypertension d) hypertension (second-order difference).

While HMMs are applicable to both stationary and nonstationary time series58, CHMMs, the proposed model’s underlying
model, do not include any theoretical information indicating whether this type of model can be used for nonstationary time
series42. Additionally, application studies used stationary series or transformed nonstationary ones to work with CHMM or
models based on CHMM59–62.

A Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is used to determine the number of differences required to make time
series stationary at the significance level of 0.05. Second-order differencing is performed on the time series of both diseases
based on the test results. According to Figure 7, heart disease and hypertension series with second-order lag are stationary.
The augmented Dickey-Fuller (ADF) test with p-values less than 0.01 for both diseases, the KPSS test with p-values greater
than 0.01 for both diseases, and the Phillips-Perron (PP) test with p-value of 0.01 for heart disease and hypertension indicate
that the series are stationary.

Application of the Proposed Model

The proposed model was applied to the number of patients with heart disease and hypertension resulting from the second-
order differencing. Since the transformation produces negative values, the observations are increased by the minimum
absolute value of the resulting observations, 270. Following that, the observed values are scaled by ten to obtain a stable
VEM algorithm fit. These transformations does not affect the results because the aim is not to predict the number of patients
but to predict the probability of co-occurrence. Initial setting for the model parameters are arranged as follows:

(i) transition probability matrix with initial state probability, (0.9 0.1 0), is defined as0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

 ;

(ii) rate parameters for emission distribution are arranged according to the mean and median values of the observations,
the initial values set to (22 26 30) for heart disease and (20 24 28) for hypertension.
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To obtain the model with the optimum fit, the odds ratios between two hidden states of the diseases,
(5, 15, 20, 25, 30, 50, 70, 100), were utilized. Due to the fact that we cannot observe the hidden states, in order to determine
the odds ratio between the occurrences of the diseases’ hidden states, we examined a range of odds ratio values and fitted
the model for each odds ratio. The optimal odds ratio value is chosen based on the one with the lowest weighted RSS.
Various inner iteration numbers were used, (150, 200, 250, 300, 350, 400); the optimal iteration number for each odds ratio
is determined by the lowest weighted RSS value.

The estimated parameters of the model after 350 iterations for selected odds ratio of 70 are as follows:

• transition probability matrix is
1 2 3 0.000 0.000 1.000 1

0.023 0.972 0.005 2

0.000 0.074 0.926 3

• initial state probabilities are (0.001 0.999 0);

• emission distribution parameters of the state-dependent observations for heart disease and hypertension are
(25.23 26.08 26.46) and (24.38 27.68 28.70), respectively,

The weighted RSS value for the model is 10.38.

Interpretation of the Findings

The Binomial copula distribution for estimated odds ratio of 70 is given as follows:

1 2 3 0.2849 0.0443 0.0041 1

0.0443 0.2448 0.0443 2

0.0041 0.0443 0.2849 3.

The Yule’s coefficient of association between hidden states representing heart disease and hypertension is 0.84; correlation
analysis conducted on the data supports this result. High association of hidden chains representing heart disease and
hypertension is supported by medical studies63,64. For example, pulmonary hypertension complicates the course of many
adults with congenital heart diseases65, severity of pulmonary hypertension in patients with left heart diseases is studied66,67.

According to the transition dynamic of hidden states and copula probabilities of joint states, we designate states as follows:

(i) State 2 represents no underlying risk factor;

(ii) State 1 corresponds to the presence of one risk factor;

(iii) State 3 corresponds to the presence of two risk factors.

Relationships between comorbid diseases are described by various etiological associations34. We suppose that occurrence of
diseases at same or different states may recognize the level of comorbidity between diseases. For example, if a single risk
factor affects two diseases, i.e. both diseases are on state 1, then we suppose that these diseases have a light comorbidity. If
both risk factors affect both diseases, i.e. hypertension and IHD are on state 3, then severe comorbidity exists. Figure 8 lists
all possible interactions between diseases and risk factors.

According to the Binomial copula matrix, joint hidden states with different state numbers, such as (1, 2), (2, 1), (2, 3),
(3, 2), (1, 3), and (3, 1), have a low probability of occurrence, implying that there is a low probability that two diseases
occur on distinct states. For instance, there is a low possibility that heart disease is not affected by any risk factor, while
hypertension is affected by two risk factors. On the other hand, the probability of a light comorbidity between diseases, as
well as a severe comorbidity, is highest at 0.2849. The probability that both diseases are not affected by hidden risk factors
is 0.2448.
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Figure 8. Interpretation of joint hidden states. Each structure relies on the interaction between diseases and risk factors.

Figure 9 displays example schemes for transitioning between joint hidden states. By multiplying the joint state and
transition probabilities, we calculate the probability of moving from ”no risk factor” to ”one of risk factors affect one disease”
level, that is (2, 2) → (2, 1) or (2, 2) → (1, 2). Thus,

P ((2, 2) → (2, 1)) = 0.023 ∗ 0.0443 = 0.00102.

The probability of both diseases remaining in ”severe comorbidity”, i.e. (3,3), is 0.2638. The probability of both diseases
remaining in a ”no risk factor”, i.e. (2,2), is 0.2379. The probability of both diseases remaining in a ”light comorbidity”,i.e.
(1,1), is 0.

The proposed model enables investigation of the joint behavior of hidden chains and hidden states, as well as their
transition dynamics. Thus, we gain a better understanding of the dependency structure of unobserved knowledge regarding
diseases with limited patient data based on hospital visits across time.
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Figure 9. Example structure of joint hidden states with Binomial copula and transition probabilities.

Concluding comments

The main focus of the proposition in this study is to use a combination of hidden Markov theory and copula function to
model parallel interacting processes describing two or more chronic diseases.

We develop a novel coupled hidden Markov model in this study that incorporates a bivariate discrete copula function into
the hidden process. We employ a novel type of discrete copula, the Binomial copula. We compute a CDLL and develop the
necessary inference to implement the model. Due to the large number of parameters required to estimate parameters using
the EM algorithm, even for two hidden chains, estimation becomes computationally intractable. As a result, we estimate the
model’s parameter using a VEM algorithm. Because the variational expectation part of the algorithm requires computing the
lower bound approximation of CDLL, we use Kullback-Leibler divergence to derive the lower bound for the log-likelihood
function based on the model. The VEM algorithm is carried out by computing conditional expectations based on forward-
backward probabilities and estimators of parameters that maximize the CDLL.

Due to the unidentifiability of copula functions defined on discrete space, Geenens18 developed a new bivariate discrete
copula. Despite extensive theoretical development, statistical inference for parameter estimation of the joint copula function
has not been developed yet. Thus, we designed a structure for joint states in such a way that they follow a predefined Binomial
copula probability mass function with a given odds ratio while also satisfying the Markov property of hidden states in each
chain. To verify and confirm the correctness of the designed structure, we calculated bias and MSE metrics and performed a
Markovian test on 500 simulated data. The simulation study was conducted for two different odds ratio capturing weak and
high association structure, and the developed model was applied. The findings of the simulation study are satisfactory.

The proposed model is applied to real data from a private hospital from January 2015 to December 2020, including
information on hospital appointments. The observed variable is the total number of patients diagnosed with a particular
disease in a given month. The purpose of this application is to define the dependency structure of unobserved clinical disease
data. The application results demonstrate that the CHMM with discrete copula is useful for investigating disease comorbidity
when only population dynamics over time are available and no clinical data are available.

During the application, one of the difficulties encountered is that the proposed model, like all HMM-based models, is
sensitive to initial parameter settings. Because the developed model has a large number of parameters to estimate, the optimal
fit is defined using combined information from weighted RSS. Additionally, the algorithm have been run multiple times with
varying inner iteration counts in order to overcome a local optimum.

The model is applicable to the study of more than two diseases; more than two hidden chains can be included in the
model. Additionally, the proposed model is general enough to account for any dependent events. The model can be extended
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to include covariates in both observed and hidden spaces. The proposed approach models interacting time series observations;
however, by combining CDLL and GLM functions, it is possible to extend this model to apply it to the longitudinal data.
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