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Abstract
This study aims to investigate the trend of water-level changes in lakes (Lake Tuz and Lake 
Beyşehir) and sinkholes (Timraş and Kızören) in the Konya Closed Basin located in Tur-
key. Water-level changes in these lakes and sinkholes were investigated along with changes 
in meteorological parameters (precipitation, temperature, and evaporation) and groundwa-
ter trends that indicate the climate in the region. Several statistical tests can be used to 
determine the significance of hydrological trends over time. These tests are divided into 
two categories: parametric and nonparametric. In this study, the nonparametric Innovate 
Sen trend test, the Modified Mann–Kendall trend test, and the parametric Linear trend 
test were used. According to the trend analysis, the water levels of Kızören and Timraş 
sinkholes decreased over time, while the water levels of lakes Tuz and Beyşehir increased. 
These results are supported by the trends in the meteorological data and groundwater level 
data of the stations determined with the Thiessen polygons and sub-basin boundaries.

Keywords Konya Closed Basin · Sinkhole · Modified Mann–Kendall trend test · Linear 
Trend test · Innovate Sen trend test

1 Introduction

Humans, who have a significant position in the environment of terrestrial and aquatic eco-
systems, need the presence of lakes, which are valuable water resources (Wantzen et  al. 
2008; Williamson et al. 2009; Waylen et al. 2019). Many lakes around the globe are fac-
ing multiple types of threats owing to combined effects such as water withdrawals result-
ing from human activities and climate variation (McBean and Motiee 2008; Yagbasan 
and Yazicigil 2012; Yuan et al. 2015; Yagbasan et al. 2020). These effects, which have a 
critical influence on regional sustainable development, can adversely impact both water 
quality and quantity (McBean and Motiee 2006; Yuan et al. 2015). The fluctuation of lake 
water levels plays an important role in lake ecosystems (Leira and Cantonati 2008). It is 
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necessary to establish sustainable management of the lakes to detect long-term changes in 
water levels (Demir and Keskin 2020).

Fluctuations in lake water levels are known to be sensitive indicators of changes in cli-
mate and groundwater and can play an important role in monitoring climate changes today 
and in the future (Tan et al. 2017). Therefore, differences in lake levels and their relation-
ship with measured climate variables are important not only for understanding and mon-
itoring the effects of climate change but also analyzing impacts on relevant ecosystems 
(Zhang et  al. 2015; Bohn et  al. 2016). Lake water level fluctuations can result from the 
complex relationship of various water balance components. These components include the 
flow entering or leaving the lake, direct precipitation to the lake surface, and groundwater 
change (Pan et al. 2018). In addition to meteorological factors such as precipitation on the 
lake drainage area, evaporation from the lake surface, wind speed, humidity, and tempera-
ture in the adjacent sub atmosphere play an important role in water level fluctuations in the 
lakes. Gradual (trend) or sudden (shifting) climate change problems have been particularly 
notable in recent years. Researchers have found that most of the changes in the lake level 
are related to meteorological variables such as precipitation, temperature and evaporation 
(McBean and Motiee 2008; Zoljoodi and Didevarasl 2014; Yagbasan et al. 2017, 2020).

Understanding long-term trends in hydrometeorological variables and groundwater 
changes is highly significant for sustainable water resource management (Hu et al. 2017; 
Citakoglu and Minarecioglu 2021). Meteorological parameters can change for many rea-
sons, depending on the time and space. These observed changes should be determined by 
various statistical methods. The trend and homogeneity analysis are two important statisti-
cal methods that are widely used around the world for assessing the long-term changes in 
meteorological variables (Yu et al. 1993; Lenters 2001; Hamed 2008; Yin et al. 2016; Yag-
basan et al. 2017, 2020; Keskin et al. 2018).

Precipitation and groundwater are the main sources of water in sinkholes. Sinkholes 
are formed by a combination of natural factors (tectonic, climate, and lithological char-
acter), human activities (maximum use of groundwater, mining, and military ammunition 
trials), and the collapse of the ceilings of underground cavities, such as underground caves 
(Gutierrez et al. 2014; Parise 2015, 2019). Therefore, the focus of this study is on deter-
mining monthly trends in groundwater levels, precipitation, temperature, and evaporation. 
Statistical analysis results in existing literature revealed that meteorological parameters and 
groundwater levels have a crucial impact on changes in lake water levels. Precipitation, 
temperature, and evaporation are the main elements in the hydrological system. Hence, a 
change in the long-term trends of these meteorological parameters will have a direct effect 
on water resources, particularly the lake water levels. In addition, climate changes and 
human activities are probable causes of changes in lake water levels (Demir and Keskin 
2020; Yagbasan et al. 2020).

Sinkholes are among the most common landforms of karst landscapes worldwide 
(Waltham et al. 2005; Parise et al. 2015, 2018). They are divided into two main categories: 
solution and subsidence sinkholes (Waltham et al. 2005; Williams 2005; Gutiérrez et al. 
2008, 2014), occur in a variety of sizes and are morphologically expressed as a function of 
the mechanisms originating them (Waltham et al., 2005). In many countries, sinkholes are 
among the most significant geohazards in karst areas, with negative societal consequences 
in terms of economic losses (particularly in urban areas), social degradation, and human 
life loss (Scheidt et al. 2005; Del Prete et al. 2010; Galve et al. 2011; Festa et al. 2012). 
Sinkholes cause the most damage in Wink, Texas, USA (Kim et  al. 2016); Sivas, Tur-
key (Yilmaz 2007); Tournaisis, southern Belgium (Kaufmann and Quinif 2002); Tampa, 
Florida (Brinkmann et  al. 2008) and southeastern Minnesota, USA (Gao and Alexander 
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2008); Apulia, southern Italy (Delle Rose and Parise 2002; Bruno et al. 2008; Margiotta 
et al. 2021); Ebro River valley, NE Spain (Galve et al. 2009); the shores of the Dead Sea 
between Israel and Jordan (Frumkin et al. 2011; Nof et al. 2013, 2019); Naples, southern 
Italy (Guarino and Nisio 2012); Elba Island, central Italy (Intrieri et al. 2015); Hamadan, 
Iran (Taheri et al. 2015) Lazio, Italy (Ciotoli et al. 2016); and Karapınar, Turkey (Ozdemir 
2015, 2016; Orhan et al. 2017, 2020, 2021).

Only a few studies on the hydrological relationship between lakes water levels, ground-
water levels, and meteorological variables are available in the literature. Some examples 
are as follows; Yenilmez et al. (2011) used the Mann–Kendall (MK) and linear trend (LT) 
methods to analyze the trend of water quality parameters, precipitation, lake volume, and 
temperatures observed in the Eymir Lake (Turkey). Bahadır (2012) used the LT method to 
analyze the precipitation and the water level trend in the Kovada Lake (Turkey). Yagbasan 
et  al. (2017) used the (MK) trend method to analyze the temperature, precipitation, and 
water levels in the Mogan and Eymir Lakes. Göncü et al. (2017) used the (MK), seasonal 
Kendall, regional Kendall, and LT methods to examine the change in the climate varia-
bles and water levels of four lakes (Burdur, Eğirdir, Sapanca, and Tuz) in Turkey. Belete 
et al. (2017) used the (MK) trend test for long-term precipitation, streamflow, and potential 
evapotranspiration trends for the water level of Lake Hawassa (Ethiopia). Yagbasan et al. 
(2020) used the (MK), Modified Mann–Kendall (MMK), and LT tests to analyze trends in 
climate variables and water-level changes in the Mogan and Eymir Lakes.

The Konya Closed Basin (KCB) is the major agricultural production region in Turkey. 
The future of agriculture in this region is threatened by the decrease in groundwater lev-
els due to climate change and other anthropogenic factors (Orhan 2021). In addition, the 
decrease in groundwater levels results in the formation of many sinkholes. In recent years, 
these sinkholes have spread from agricultural to urban regions, posing a threat to human 
life (Orhan et al. 2020). Since the region is a closed basin, the groundwater flow is influ-
enced by meteorological parameters and eventually ends up in lakes. This study aimed 
to investigate the long-term fluctuations of precipitation temperature, evaporation, and 
groundwater changes in lakes in the Central Anatolia region of Turkey. In this study, the 
homogeneity characteristic of the time series was investigated. Subsequently, trend analy-
ses were conducted. The standard normal homogeneity test (SNHT) was used to determine 
if the hydrological data came from the same population. Nonparametric MMK, Sen’s inno-
vative trend (ST), and parametric LT methods were used for trend analyses.

2  Materials and methods

2.1  Study area

The KCB is located in the central and southern parts of the Central Anatolia Region. Agri-
culture is the most important economic activity in the KCB, with the primary crops being 
beets, corn, and wheat. In Turkey, the KCB is one of the driest sectors, with a semi-arid cli-
mate, which causes cold moist winters and hot dry summers (Orhan et al. 2020). Accord-
ing to the long-term data from meteorological stations (Fig.  1) in the KCB, the average 
annual temperature is 11.6 °C (max 40.6 °C, min − 28.2 °C). The average annual precipi-
tation is 323.3  mm (Demir and Keskin 2020). Precipitation is convective in the region. 
Evapotranspiration often exceeds total precipitation (393.50 mm). Lakes Beyşehir and Tuz 
are the region’s most important lakes (Fig. 1a and d).
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Lake Tuz is the second largest lake in Turkey by surface area and is extremely shal-
low. Since the lake is shallow, intense evaporation creates a high salt concentration in the 
lake (Göncü et al. 2017). This lake provides 55% of Turkey’s salt requirements. Lake Tuz 
is a closed basin lake that does not flow out, and its surface area is 7414   km2 (Dengiz 
et  al. 2010). Despite the widespread precipitation, the feeding sources are limited. Dur-
ing the summer, the streams that supply water to the lake either diminish in volume or 
dry up. The average depth of the lake is approximately 40 cm, but it increases to 110 cm 
in May when precipitation increases. In August, the lake dries up considerably. Lake Tuz 
and its surroundings are both designated as a specially protected area. Many eccentric bird 
species breed in the surrounding environment (Anonymous 2020). Lake Beyşehir is Tur-
key’s largest freshwater lake (Guler et al. 2008). It is the third-largest lake after Lake Van 
and Lake Tuz, with a surface area of 650  km2, and surrounded by mountains in a tectonic 
deposit. Although the average depth of the lake is 5–6 m, its maximum depth is 8–9 m. 
Lake Beyşehir, similar to Lake Tuz, is a protected area in Turkey and a home to 545 plant 
species, 163 bird species, and 16 fish species. Many water birds migrate to Lake Beyşehir 
to hunt and breed (Bucak et al. 2018).
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The KCB has over 300 sinkholes, which hold 33.3% of the country’s groundwater 
(Orhan et al. 2021). The sinkholes are formed because of the dissolution of carbonate rocks 
by carbon dioxide  (CO2) rich groundwater and the collapse of the ceiling of underground 
cavities at a later stage in the KCB. If the collapse reaches the groundwater level, water 
accumulation is observed at the bottom of the sinkhole (Recep and Tapur 2009). Timraş 
and Kızören are the most important sinkholes in the region (Fig. 1b and c) (Günay et al. 
2011, 2015). The Timraş Sinkhole was formed within Neogene-aged lacustrine limestones. 
The Timraş Sinkhole is located approximately 40 km southeast of Konya and 46 km from 
the Konya–Karaman highway (Fig. 1b). It is an ellipse-shaped sinkhole composed of lime-
stones with long and short diameters of 325 m and 250 m, respectively. The deepest point 
of the sinkhole has been recorded at 32 m (Recep and Tapur 2009). The formation of the 
Kızören Sinkhole is based on two stages. The Kızören Sinkhole was formed in two phases 
within Paleozoic aged crystallized limestones and Neogene lacustrine formations (Recep 
and Tapur 2009). This sinkhole is located 75  km away from the city of Konya, Turkey 
(Fig. 1c). It has an elliptical shape, with a long axis of 180 m and a short axis of 150 m. It 
is up to 145 m deep below the water surface (Günay et al. 2011).

2.1.1  Geological and Hydrogeological Background of the KCB

Konya Basin consists of allochthonous and autochthonous rocks (Robertson and Ustaömer 
2009). Although Paleozoic schists can be found near the base, they are overlain by Paleo-
zoic and Mesozoic marbles and carbonates. Sedimentary and volcanic rocks from the Ter-
tiary period lie on top of younger (Miocene–Pliocene) lacustrine deposits (Association of 
Cave Research 2021). Figure 2 depicts the geological map of the study area.

As shown in Fig. 2, both the Kızören Sinkhole and the Timraş Sinkhole are located in 
the limestone region (Günay et al. 2011). Groundwaters are provided by the Taurus Moun-
tains (Fig. 1) located to the south of the KCB. The Taurus Mountains are the highest in 
the region. Over time, sinkholes are formed as the ground dissolves owing to a lowering in 
groundwaters. Except in the Lake Beyşehir basin, where groundwaters move toward Lake 
Beyşehir, groundwater moves from south to north toward Lake Tuz in other sub-basins 
(sub-basins are colored in Fig.  1) (Günay et  al. 2011). During the flow from the Konya 
Plain to Lake Tuz, the groundwater dissolves karstic rocks and underground cavities are 
formed. Owing to the decrease in the groundwater level that fills these gaps, the surface 
layers, which have a disturbed balance, collapse and karstic shapes emerge (Recep and 
Tapur 2009).

2.1.2  Data

Monthly total precipitation data (mm), monthly average temperature (°C) and monthly total 
evaporation (mm), were obtained from the General Directorate of Meteorology in meteor-
ology stations (Fig. 1). Lake level data and groundwater-level data (m) were obtained from 
the Directorate General for State Hydraulic Works. Other informations about the stations 
are tabulated in Table 1. Unfortunately, due to various regulations made by the government 
agency, the data could not be obtained after 2017. The data used in the study cover the time 
interval between 1964 and 2017. Table 1 shows the location of the meteorological, lake 
level observation and the groundwater-level observation stations employed in the study. 
Table 2 shows the statistical properties and data periods used in the study. The distribution 
of long-term average groundwater levels in the study area is given in Fig. 3.
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2.2  Methods

In this study, an investigation of the long-term monthly lake water level, sinkhole water level, 
groundwater level, precipitation, temperature, and evaporation series analysis was performed. 
Firstly, the homogeneity conditions were examined. Later trend analyses were carried out.

2.2.1  Standard normal homogeneity test (SNHT)

This method developed by Alexandersson is used to test the homogeneity of many hydro-
meteorological series (Khaliq and Ouarda 2007).  The value of T(c) (Eq. 1)  is calculated by 
dividing it into two parts with reference to a “c” point of the studied series (Eqs. 2 and 3).

(1)T(c) = cz1 + (n − c)cz
2

2
c = 1, 2, 3, … .., n

(2)z1 =

c∑
i=1

(yi − y)∕�)∕c

(3)z2 =

n∑
i=1+c

(yi − y)∕�)∕(n − c)

.Timraş Sinkhole

. Kızören Sinkhole

Fig. 2  Geological and geomorphological map of the study area (adapted from Kuzucuoglu et al. (1998) and 
Caló et al. (2017))
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where “T (c)” SNHT statistics value, “n” is the number of data, “y” is years, z is the stand-
ardized work series of length n, z1 and z2 are arithmetic mean values of the series. If the 
change occurs at a point "h", it reaches the maximum value of T(c) at point c = h. T0 is the 
test statistic of the SNHT method and is obtained with the help of Eq. (4).

If the test statistic T0 exceeds the T0 critical value, the null hypothesis (H0) is rejected. 
T0 test values depending on the number of data and 95% Confidence Level (CL) is given in 
Table 3 (Alexandersson 1986).

2.2.2  Modified Mann–Kendall (MMK)

This method tests if there is a trend in the time series data (Mann 1945; Kendall 1975). It is 
a non-parametric rank-based procedure, robust to the influence of extremes and suitable for 
application with skewed variables (Hamed 2008). Test statistic value is calculated with the 
help of Eqs. (5 and 6).

In Eq. (5), xi and xj are the data values in time series i and j, respectively and in Eq. (6), 
n is the number of data points, sgn (xj–xi) is the sign function follow as;

(4)T
0
= max

1≤c≤n

T(c)

(5)sgn(xj − xi) =

⎧
⎪⎨⎪⎩

1; if xj > xj
0; if xj = xi
−1; if xj < xi

Fig. 3  Distribution of long-term average groundwater levels

Table 3  T0 test critical values depending on the number of data

Number of data 30 40 50 70 100 200 500 700 1000

CL (95%) 7.65 8.10 8.45 8.80 9.15 9.55 10.20 10.45 10.50
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After that, the variance is computed follow as;

In Eq. (7), n refers to the number of data, P shows the number of tied groups, and ti indi-
cates the number of ties of extent i. A tied group is a set of sample data and has the same 
value. Finally, with the help of Eq. (8), Mann–Kendall Z value is calculated.

The MMK method is obtained by rearranging the variance in the original MK method. 
This process is used to calculate the new Z value by determining the auto-correlation effect. 
Adjusted variance value is calculated as given in Eqs. (9 and 10) (Yue et al. 2002).

In Eq. (10), n/ns*, represents a correction due to automatic correlation in the data. “n” 
is the actual number of observations and ρs(i) is the auto-correlation of the observation 
ranks (González-Hidalgo et  al. 2011). The calculated Z value is compared with normal 
distribution confidence levels. If the calculated Z value is greater than |Z| ≥|Z1−α/2|, the null 
hypothesis (H0) is rejected, and thus, the Ha (alternative hypothesis) hypothesis is accepted. 
 H0 hypothesis states that the trend is statistically insignificant, Ha hypothesis states that the 
trend is significant (Mann, 1945; Kendall, 1975).

2.2.3  Linear trend (LT)

This method basically rests on the slope of a line. It is a widely used method to deter-
mine the tendency of dependent and independent variables in hydrological time series. The 
regression equation is given below (Keskin et al. 2018).

In Eq. (11), β0 is a constant value and β1 is the slope of the line. It is also referred to as 
regression analysis, and trends (increasing or decreasing) are interpreted according to the 
student’s t-test critical level value of the slope value (β1). If |tcal| exceeds ± tcri, there is a 
statistically significant trend (Yagbasan et al. 2020).

(6)S =

n−1∑
i=1

n∑
j=i+1

sgn(xj−xi)

(7)Var(S) =
n(n − 1)(2n + 5) −

∑P

i=1
ti(ti − 1)(2ti + 5)

18

(8)Z =

⎧
⎪⎨⎪⎩

S−1√
Var(S)

; if S > 0

0 if S = 0
S+1√
Var(S)

if S < 0

(9)V(S) = Var(S) ∗
n

n∗
s

=
n(n − 1)(2n + 5)

18
∗

n

n∗
s

(10)n

n∗
s

= 1 +
2

n(n − 1)(n − 2)
×

n−1∑
i=1

(n − i)(n − i − 2)�s(i)

(11)Y = �0 + �1X
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2.2.4  Sen trend (ST)

In this method, first, time series is divided into two sub-series. Each sub-series is sorted in 
an ascending manner. Then, the first sub-series (Xi) is located on the X-axis, and the other 
sub-series (Xj) is located on the Y-axis in the Cartesian coordinate system (Fig. 4). If data 
are placed on the 1:1 (45°) straight line, it can be said that there is no trend (a trendless 
time series). If data are accumulated in the triangular area below the 1:1 (45°) straight line, 
there is a decreasing trend. If data are accumulated in the upper triangular area of the 1:1 
(45°) straight line, there is an increasing trend (Şen 2012).

Initially, trend directions were interpreted graphically, then a new mathematical pro-
cess was developed by Sen. (Şen 2014, 2017). The steps of this method are given in 
Eqs. (12–16).

where y 1, mean of the first data set; y 2, mean of the second data set; ρ, correlation between 
first and second data; s, slope value; n, number of data; σ, standard deviation of all data; 
σs, slope standard deviation; Z critical values in one-way hypothesis at 95% (for example) 
confidence level. Critical upper and lower values are established for hypothesis test limits 
(Eq. 16). If each station’s slope value, s, is outside the lower and upper confidence limits, 

(12)E(s) =
2

n

[
E(y2) − E(y1)

]

(13)�2
s
=

4

n2

[
E(y

2

2
) − 2E(y2y1) − E(y

2

1
)
]

(14)�y2y1 =
E(y2y1) − E(y2) − E(y1)

�y2�y1

(15)�2
s
=

2
√
2

n
√
n
�

�
(1 − �y2y1 )

(16)CL(1−�) = 0 ± Scritical�s

Fig. 4  ST method trend regions 
(Keskin et al. 2018)
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the alternative hypotheses, Ha, is verified, indicating a trend (Yes) in time series. The type 
of trend is stated depending on the slope value (s) sign. Slope (s) can be positive or neg-
ative. While positive slope ( +) is indicating an increasing trend in time series, negative 
slope (˗) shows a decreasing trend (Yagbasan et al. 2020).

3  Results

In this study, the SNHT approach was first used to test the homogeneity of the trends. 
Table 4 shows the results of comparing the test values to the critical limits (T0) in a 95% 
confidence interval. Subsequently, trend analyses were conducted using the MMK, LT, and 
ST methods over long-term periods. The MMK and ST methods used in the study are non-
parametric tests, whereas LT is a parametric test. Table 5 presents the results of the MMK, 
LT, and ST methods, as well as their critical limits (in 95% of the confidence interval). As 
shown in Table 5, the precipitation, groundwater, and lake levels are considered to have a 
statistical trend at the time series if the Z, t, and s values of the stations are higher than the 
critical limits. The direction of the trend is determined by the sign of the Z, s, or t value. 
The positive and negative signs indicate increasing and decreasing trends, respectively.

The SNHT results showed that the H0 hypothesis is accepted (except for the evapora-
tion data of the Konya and Beyşehir stations) because the T0 value of all meteorology sta-
tions is lower than the  T0 critical value, and the p-value (H0 hypothesis) is greater than 
0.05, which is the critical value. These results indicate that the meteorological data are 
homogeneous (Demir and Keskin 2020). However, when the homogeneity conditions of 
the lake and groundwater stations were examined, the  H0 hypothesis was rejected, and it 
was established that the data were nonhomogeneous. Trends typically occur when data are 
nonhomogeneous (Demir et al. 2018). These results show that, contrary to the homogene-
ous precipitation data, the lake water and groundwater levels tend to trend.

The MMK and LT methods showed similar results. No significant trend could be 
detected at the precipitation stations. The evaporation data of Beyşehir and Konya stations 
showed increasing trends using both methods. In addition, increasing trends were deter-
mined for evaporation data at the Cihanbeyli station and for temperature data at the Cumra, 
Kulu, Cihanbeyli, and Aksaray stations.

The results of the MMK method for Lake Tuz indicated no trend in the lake water lev-
els, whereas other stations showed a decreasing trend with the MMK and LT methods. 
When the groundwater levels were examined, the three trend methods revealed a decreas-
ing trend in the Selçuklu and Çumra stations and an increasing trend in the Beyşehir sta-
tion. The increasing trend detected at the Kulu and Cihanbeyli stations is statistically sig-
nificant for the ST and LT methods but not for the MMK method. Except for the Çumra 
station, all precipitation stations and lake levels showed a decreasing trend using the ST 
method. Except for the Karapınar evaporation data, temperatures and evaporations from 
other meteorological parameters showed an increasing trend at all stations. Linear trend 
graphs for all data time series are shown in Figs. 5, 6, 7, 8, 9.

Except for the Beyşehir station, the long-term precipitation series in Fig.  5 depicts a 
decrease in precipitations in the KCB. From the linear regression equation (y = ax + b), it 
was determined that the precipitation data of the Beyşehir station increase by 0.0013 mm/
month. Meanwhile, the precipitation data of the Karapınar, Çumra, Kulu, Cihanbeyli, 
Konya, and Aksaray stations decrease by 0.0012, 0.0002, 0.0062, 0.0017, 0.0020, and 
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0.0014  mm/month, respectively. However, these trends are statistically insignificant 
according to the LT method (Table 5).

In Fig. 6, the long-term temperature series depicts that temperatures have been increased 
in the Konya closed basin. The temperature data of the Karapınar, Çumra, Kulu, Cihan-
beyli, Konya, Beyşehir, and Aksaray stations increasing by 0.002, 0.0038, 0.0033, 0.0035, 
0.0018, 0.0009, and 0.0033 C°/month, respectively. However, these trends are statistically 
insignificant according to the LT method (Table 5).

In Fig. 7, the long-term evaporation series depicts that evaporations have been increased 
like temperatures, except for the Aksaray station. The evaporation data of the Karapınar, 
Çumra, Kulu, Cihanbeyli, Beyşehir, and Konya stations increasing by 0.0022, 0.1452, 

Table 4  Results of the SNHT test

Station type Station name T0 value Critical 
T0 value 
(α = 5%)

P value H0

Meteorology observation station (precipita-
tion)

Karapınar 4.158 10.348 0.649 Accept
Çumra 2.973 10.140 0.843 Accept
Kulu 4.023 10.348 0.685 Accept
Cihanbeyli 2.434 10.348 0.944 Accept
Beyşehir 6.189 10.348 0.237 Accept
Konya 2.240 10.348 0.961 Accept
Aksaray 4.094 10.348 0.672 Accept

Meteorology observation station (tempera-
ture)

Karapınar 6.814 10.348 0.239 Accept
Çumra 9.124 10.233 0.070 Accept
Kulu 3.642 10.278 0.755 Accept
Cihanbeyli 5.842 10.348 0.343 Accept
Beyşehir 5.588 10.348 0.377 Accept
Konya 5.368 10.348 0.419 Accept
Aksaray 5.892 10.348 0.337 Accept

Meteorology observation station (evapora-
tion)

Karapınar 2.553 9.747 0.912 Accept
Çumra 1.545 9.355 0.984 Accept
Kulu 1.627 9.509 0.985 Accept
Cihanbeyli 3.978 9.898 0.639 Accept
Beyşehir 38.657 9.934  < 0.0001 Reject
Konya 28.422 0.054  < 0.0001 Reject
Aksaray 6.105 9.842 0.280 Accept

Lake observation station Kızören 504.88 10.310  < 0.0001 Reject
Timraş 370 10.096  < 0.0001 Reject
Lake Tuz 25.395 10.306  < 0.0001 Reject
Lake Beyşehir 323.09 10.350  < 0.0001 Reject

Groundwater-level observation stations Cihanbeyli 49.82 9.45  < 0.0001 Reject
Selçuklu 471 10.28  < 0.0001 Reject
Beyşehir 126 9.42  < 0.0001 Reject
Çumra 473 10.28  < 0.0001 Reject
Kulu 51.33 9.41  < 0.0001 Reject
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0.0447, 0.038, 0.0613, and 0.0238 mm/month, respectively. However, these trends are sig-
nificant only in Beyşehir and Konya stations according to the LT method.

Figure  8 shows a decreasing trend in both lakes and sinkholes. This decrease is 
0.0396 m/month for Kızören sinkhole, 0.0488 m/month for Timraş sinkhole, 0.000001 m/
month for Lake Tuz, and 0.0032 m/month for Lake Beyşehir.

In Fig. 9, the water levels at Selçuklu (− 0.049 m/month) and Çumra (− 0.0274 m/
month) stations show a dramatic decrease, which is statistically significant according to 
the LT method. According to the linear trend slope equation, it was determined that the 
groundwater level of Beyşehir (0.0403 m/month), Kulu (0.0044 m/month), and Cihan-
beyli (0.0023 m/month) stations increased. However, these trends (0.0403 m/month) are 
significant only in Beyşehir station according to the LT method.
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Fig. 5  Precipitation data time series; a Karapınar, b Çumra, c Kulu, d Cihanbeyli, e Beyşehir, f Konya, and 
g Aksaray station
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ST graphs on the Cartesian coordinate system are given for precipitation in Fig. 10, 
the temperature in Fig. 11, evaporations in Fig. 12, lake levels in Fig. 13, and ground-
water levels in Fig. 14. If the data are concentrated in the upper triangular region on the 
1:1 line (45), this indicates an increasing trend. If the data are concentrated under the 
1:1 line, the parameter in the time series is interpreted as showing a decreasing trend.

In the ST graphs in Figs. 11 and 12, the temperature and evaporation data are clearly 
concentrated in the region above the 1:1 line. This indicates the presence of an increas-
ing trend. Contrary to the general trend in the Karapınar station evaporation data, the 
fact that the lower-level data is in the decreasing region is considered an indicator of 
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Fig. 6  Temperature data time series; a Karapınar, b Çumra, c Kulu, d Cihanbeyli, e Beyşehir, f Konya, and 
g Aksaray station
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the meaninglessness in Table 5. In Fig. 10, it could not be exactly determined whether 
the precipitation data concentrated in the lower or higher triangular regions. This is 
the limitation of the method (Sen 2012). However, when the averages of the data are 
analyzed, the results are similar to the ST results in Table 5. In Fig. 13, the data for 
Lake Beyşehir and sinkholes are concentrated in the lower triangular region. When the 
graph was analyzed by averaging the data for Lake Tuz, it was determined that the data 
decreased. In Fig. 14, the Cihanbeyli, Kulu, and Beyşehir stations are concentrated in 
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Fig. 7  Evaporation data time series; a Karapınar, b Çumra, c Kulu, d Cihanbeyli, e Beyşehir, f Konya, and 
(g) Aksaray station
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the upper triangular region and show an increasing trend, whereas other stations show 
a decreasing trend in the lower triangular region.

3.1  Results for the sub‑study areas and same period analysis

In this section, data from the same period were used to investigate the effect of changes 
in meteorological parameters on changes in lakes and sinkhole water levels and 
groundwater levels. Furthermore, the research region was divided into Thiessen impact 
polygons and sub-basins. According to the sub-basin and Thiessen polygon analyses 
(Fig. 1), Lake Tuz is in the polygon belonging to the Cihanbeyli, Kulu, and Aksaray 
precipitation stations, as well as the Cihanbeyli (53706) and Kulu (53707) groundwa-
ter stations. Lake Beyşehir is in the polygon belonging to the Beyşehir precipitation 
station and the Beyşehir (52770) groundwater station. The Kızören Sinkhole is in the 
polygon belonging to the Cihanbeyli and Karapınar stations. The Timraş Sinkhole is in 
the polygon belonging to the Çumra station and the Çumra (181) groundwater station 
(Fig. 1). Therefore, precipitation has a direct effect on these stations (Thiessen 1911; 
Demir and Keskin 2020).

3.1.1  Kızören Sinkhole region

Figure  15 shows the groundwater level of the Kızören Sinkhole, as well as the precipi-
tation, temperature, and evaporation data from the Cihanbeyli and Karaman meteorology 
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Fig. 8  Water level data time series; a Kızören sinkhole, b Timraş sinkhole, c Lake Tuz, and d Lake 
Beyşehir station
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stations. The set period of the evaporation data and the data from the months of the meas-
urements are used in this and the following sections.

The water level in the Kızören Sinkhole shows a decreasing trend. According to the 
Thiessen polygons, when the graphs of the precipitation data affecting this sinkhole are 
examined in the same periods, decreasing trends were observed in the Cihanbeyli and 
Karapınar stations. Since there is no groundwater observation station near the Kızören 
Sinkhole, the change in the Kızören Sinkhole trend in this section is interpreted only with 
precipitation data. The increasing trend of the temperatures and related evaporation data 
may cause a decrease in sinkhole levels. The relationship between the parameters was 
also examined using correlation analysis. “Appendix 1” shows the correlation results for 
Kızören Sinkhole region.

There is a positive significant relationship between the Karapınar station precipita-
tion data and the Cihanbeyli station precipitation data, as well as a positive significant 
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relationship between the Karapınar station temperature data, Cihanbeyli station tempera-
ture data, Karapınar station evaporation data, and Cihanbeyli station evaporation data. A 
moderately significant positive correlation was found between the Kızören Sinkhole water 
levels and the Karapınar station precipitation data.

3.1.2  Konya—Selçuklu groundwater region

Figure 16 shows the groundwater levels at the Selçuklu groundwater level observation sta-
tion in this section, as well as the precipitation, temperature, and evaporation data from the 
Konya meteorology station.

Figure 16 shows a decreasing trend in the Konya station precipitation data and the 
Selçuklu groundwater levels. However, there is an increasing trend in temperatures and 
evaporation, which may be effective in the decrease in the groundwater level. Accord-
ing to the precipitation data, the decrease in groundwater levels is more pronounced, 
increasing at a faster rate in recent years. “Appendix 2” shows the correlation results for 
Konya—Selçuklu region. The positive significant relationship between the temperature 
and evaporation data, whereas a negative significant relationship was found between the 
temperature and precipitation data at the Konya station. The relationship between the 
groundwater levels and other parameters is meaningless and poor.

0

50

100

0 50 100

P
re

ci
p
it

at
io

n
 (

m
m

) 
1
9
9
1
-2

0
1

7

Precipitation (mm) 1964-1990

KARAPINAR

0

50

100

0 50 100

P
re

ci
p
it

at
io

n
 (

m
m

) 
1
9
9
8
-2

0
1

7

Precipitation (mm) 1978-1997

ÇUMRA

0

50

100

0 50 100

P
re

ci
p
it

at
io

n
 (

m
m

) 
1
9
9
1
-2

0
1

7

Precipitation (mm) 1964-1990

KULU

0

50

100

0 50 100

P
re

ci
p
it

at
io

n
 (

m
m

) 
1

9
9

1
-2

0
1

7

Precipitation (mm) 1964-1990

CİHANBEYLİ

0

50

100

150

200

0 50 100 150 200

P
re

ci
p
it

at
io

n
 (

m
m

) 
1

9
9

1
-2

0
1

7

Precipitation (mm) 1964-1990

BEYŞEHİR

0

50

100

0 50 100

P
re

ci
p
it

at
io

n
 (

m
m

) 
1

9
9

1
-2

0
1

7

Precipitation (mm) 1964-1990

KONYA

0

50

100

0 50 100

P
re

ci
p

it
at

io
n

 (
m

m
) 

1
9
9
1
-2

0
1
7

Precipitation (mm) 1964-1990

AKSARAY

Fig. 10  ST graphical results for the precipitation observation stations
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3.1.3  Lake Tuz region

Figure 17 shows the water levels of Lake Tuz in this section, as well as the precipitation, 
temperature, and evaporation data from the Cihanbeyli, Kulu, and Aksaray meteorology 
stations. “Appendix 3” presents the correlation results for Lake Tuz region.

As shown in Fig. 17, the water levels in Lake Tuz have increased, in consequence of 
an increase in the precipitation data and groundwater levels and the decrease in the tem-
perature data and evaporation data. In “Appendix 3”, the temperature and evaporation 
data in the region have a strong positive relationship, whereas the precipitation data has 
a negative relationship. The increase in the water levels of Lake Tuz is significant owing 
to an increase in the groundwater level at the Cihanbeyli station.

Fig. 11  ST graphical results for 
temperature observation stations
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3.1.4  Timraş Sinkhole region

In this section, Fig. 18 shows the water levels of the Timraş Sinkhole, as well as the pre-
cipitation, temperature, and evaporation data of the Çumra station. “Appendix 4” presents 
the correlation results for the Timraş Sinkhole region.

Figure  18 shows decreasing trends in Timraş Sinkhole level and Çumra groundwater 
level observation stations, while increasing trends are observed in the temperature, evapo-
ration, and precipitation parameters. The Timraş Sinkhole and the decreasing trend in the 
Çumra groundwater-level observation station are in close proximity. In addition, the cor-
relation coefficient between these two data sets is 0.965. This result indicates that although 
the water levels of the sinkhole and the meteorological parameters produce similar results 

Fig. 12  ST graphical results for 
evaporation observation stations
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in terms of the hydrological cycle, the levels of the sinkhole are more related to the ground-
water levels.
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3.1.5  Lake Beyşehir region

The water levels of the Lake Beyşehir in this section, precipitation, temperature and evapo-
ration data of the Beyşehir meteorology station and groundwater-level data of the Beyşehir 
groundwater-level observation station are given in Fig. 19.

In Fig. 19, it is seen that the temperature and evaporation data have decreased, and the 
lake levels, precipitation and groundwater levels have increased. Although these trend situ-
ations among the data are seen to be compatible with the hydrological cycle deficit, when 
the correlation between the data is examined, the precipitation, the temperature, and the 
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groundwater levels show a negative relationship different from the expected (expected is 
an increase in precipitation, a decrease in temperatures and an increase in lake levels). This 
situation brings to mind that there may be an anthropogenic effect. “Appendix 5” shows the 
correlation results between other parameters. After examining the meteorological param-
eters in the time series according to the trend graphs and the slope of the regression line, 
the trend analysis results are given in Table 6 for the MMK, LT and ST methods.

In Table 6, it was determined that the temperatures increased at Cihanbeyli station, and 
the water levels decreased in Kızören Sinkhole according to all three methods in Kızören 
region. In addition, it was determined that evaporation at Cihanbeyli station and temper-
atures at Karapınar station increased according to the ST method. According to the ST 
method, precipitation tends to decrease at Karapınar station. In the Konya region, tempera-
tures and evaporation increase and groundwater levels decrease according to all three meth-
ods. In addition, precipitation shows a decreasing trend according to the ST method. While 
no trend could be detected in Lake Tuz region according to the LT method, evaporations 
decreased at Aksaray station and groundwater levels decreased at Kulu station according to 
the MMK method.

According to the ST method, temperatures and evaporation increase and precipita-
tion decreases at meteorological stations. While the groundwater level decreases at Kulu 
station, it increases at Cihanbeyli station. An increasing trend was detected in Lake Tuz. 
As a result, the increase in Lake Tuz is more compatible with the meteorological param-
eters and the change in the groundwater levels at the Cihanbeyli station, independent of 
the groundwater levels at the Kulu station. The results obtained in the Timraş region are 
the most impressive part of the study. In Timraş Sinkhole, decreasing trends were deter-
mined according to all three methods. In addition, decreasing trends were determined at 
Çumra station, which was determined to be related to these sinkhole water levels. This 
result revealed that sinkhole water levels were related to groundwater levels rather than 
meteorological parameters. According to the ST method, it was also determined that pre-
cipitation increased and temperatures decreased. In Beyşehir region, it was determined 

y = -0.0142x + 27.758

0

20

40

60

80

100

120

140

Ja
n

-6
6

M
ay

-6
9

S
ep

-7
2

Ja
n

-7
6

M
ay

-7
9

S
ep

-8
2

Ja
n

-8
6

M
ay

-8
9

S
ep

-9
2

Ja
n

-9
6

M
ay

-9
9

S
ep

-0
2

Ja
n

-0
6

M
ay

-0
9

P
re

ci
p

it
at

io
n

 (
m

m
)

Konya

y = 0.0077x + 15.161
-15

-5

5

15

25

35

Ja
n

-6
6

M
ay

-6
9

S
ep

-7
2

Ja
n

-7
6

M
ay

-7
9

S
ep

-8
2

Ja
n

-8
6

M
ay

-8
9

S
ep

-9
2

Ja
n

-9
6

M
ay

-9
9

S
ep

-0
2

Ja
n

-0
6

M
ay

-0
9

T
em

p
er

at
u
re

 (
C

°)

Konya

y = 0.1122x + 139.54

0

100

200

300

400

500

Ja
n

-6
6

M
ay

-6
9

S
ep

-7
2

Ja
n

-7
6

M
ay

-7
9

S
ep

-8
2

Ja
n

-8
6

M
ay

-8
9

S
ep

-9
2

Ja
n

-9
6

M
ay

-9
9

S
ep

-0
2

Ja
n

-0
6

M
ay

-0
9

E
v
ap

o
ra

ti
o
n
 (

m
m

)

Konya

y = -0.0773x + 4.1511

-45
-40
-35
-30
-25
-20
-15
-10

-5
0

Ja
n

-6
6

M
ay

-6
9

S
ep

-7
2

Ja
n

-7
6

M
ay

-7
9

S
ep

-8
2

Ja
n

-8
6

M
ay

-8
9

S
ep

-9
2

Ja
n

-9
6

M
ay

-9
9

S
ep

-0
2

Ja
n

-0
6

M
ay

-0
9

G
ro

u
n
d
w

at
er

-l
ev

el
  
(m

)

Selçuklu

Fig. 16  The data  graph of the Konya  meteorology  observation station station and Selçuklu groundwater 
level observation station in the same periods
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groundwater level observation station in the same periods



2901Natural Hazards (2022) 112:2873–2912 

1 3

that the groundwater levels increased according to all three methods, and the evaporation 
decreased, and the lake level increased according to the ST method.

4  Discussion

According to homogeneity test results, the precipitation data and the temperature data are 
homogeneous and do not show any trend in the long-term period. However, the lake water 
level, sinkhole water level and groundwater level data are non-homogeneous and show a 
trend. In addition, this situation is also seen in the evaporation data of Beyşehir and Konya 
stations in the long-term period. The opposite relationship between homogeneity and a 
trend is similar in other studies (Taxak et al. 2014; Demir et al. 2018; Demir and Keskin 
2020).

According to trend test results for a long-term period, even though, the analysis results 
(Table 5) give similar data, they differ from each other at some points. For example, while 
there is no trend in precipitation stations compared to the MMK and LT methods, decreas-
ing trends are observed compared to the ST method. The LT and ST methods gave simi-
lar trends in lake water levels and sinkhole groundwater levels. Alternatively, the MMK 
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Fig. 18  The data graph of Timraş Sinkhole, Çumra station in the same periods
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method did not show a trend in Lake Tuz, Cihanbeyli and Kulu stations, while other meth-
ods detected a trend. Again, when Table 5 is examined for the other two stations except 
Cihanbeyli station, the MMK method gave similar trends with the ST and LT methods. 
However, these trends are not statistically significant. In other words, just the sign of the 
MMK test values alone is compatible with the ST and LT methods. The difference in the 
methods depends on the methodology of obtaining critical account values. While the ST 
method calculates CL according to one-tail Z distribution, and according to the correlation 
between data (Eq. 16), the LT method calculates critical values according to t distribution 
and the MMK method according to the Z distribution (Eq. 8). As a result of the long-term 
analysis, it can be said that temperatures and evaporation have increased in the region, pre-
cipitation has decreased, and the sinkholes groundwater levels and lakes water levels have 
decreased. As for groundwater levels, they decreased at Selçuklu and Çumra stations, and 
increased at Cihanbeyli, Beyşehir and Kulu stations. For this reason, analyzes were carried 
out in the same time periods, which is the second phase of the study, and the results are 
given in Table 6. In order to better interpret the tabular results, the results are mapped on 
the study area as in Fig. 20.

The trend analysis results for the same periods shown in Fig. 20 were mapped region-
ally. Meteorological stations are schematized with circles, while trends in lakes water 
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levels and sinkhole water levels are shown with arrows pointing upwards or downwards. 
All trends in the chart are statistically significant trends. In addition, Thiessen polygons 
and sub-basin boundaries can be seen in Fig. 20. The similarity of the method results and 
the change of the trends can be seen more clearly in Fig. 20. When the figure is examined 
with a general view, increases in temperatures and evaporation and decreases in water lev-
els in lakes and sinkholes are seen.

Table 6  Comparison of trend analysis results at the same periods

Region Station 

Same period 
MMK 

(Z)
LT 
(t)

ST 
(s) 

Kızören 

Karapınar (P) -0.23 -0.71 -0.0231
Cihanbeyli (P) -0.46 0.04 0.0004 

Karapınar (T) 1.35 0.70 0.0051
Cihanbeyli (T) 2.22 1.35 0.0102
Karapınar (E) 0.16 -0.02 -0.0031 

Cihanbeyli (E) 0.79 0.51 0.0623
Kızören Sinkhole (WL) -14.13 -9.85 -0.0809

Konya 

Konya (P) -1.04 -0.93 -0.0103
Konya (T) 2.59 2.11 0.0063
Konya (E) 3.71 2.13 0.1143
Selçuklu (GWL) -7.67 -10.36 -0.0639

Lake Tuz 

Kulu (P) 0.69 0.54 0.4378
Cihanbeyli (P) 0.86 0.73 0.7493
Aksaray (P) 0.55 0.44 0.5465
Kulu (T) -0.73 -0.19 -0.0539
Cihanbeyli (T) -0.98 -0.30 -0.0824
Aksaray (T) -1.18 -0.19 -0.0493
Kulu (E) -0.83 -0.24 -1.2143
Cihanbeyli (E) -1.31 -0.29 -1.6620
Aksaray (E) -2.33 -0.81 -2.7729
Cihanbeyli (GWL) 1.05 0.84 0.0523
Kulu (GWL) -2.08 -1.17 -0.1118
Lake Tuz (WL) 0.24 0.02 0.0016

Timraş 

Çumra (P) 0.47 0.81 0.0207
Çumra (T) -0.45 -0.47 -0.0091
Çumra (E) 0.16 0.51 0.0185 

Çumra (GWL) -7.02 -6.47 -0.1025
Timraş (WL) -6.61 -4.66 -0.1257

Lake Beyşehir 

Beyşehir (P) 1.15 0.56 -0.0132 

Beyşehir (T) -0.16 -0.28 0.0025 

Beyşehir (E) -1.38 -1.16 -0.3263
Beyşehir (GWL) 3.37 5.20 0.1177
Lake Beyşehir (WL) 1.33 1.13 0.0152

(+): Increasing trend, (+): Statistically Insignificant Increasing trend, 

(-): Decreasing trend, (-): Statistically Insignificant Decreasing trend 
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Although the precipitation increase and decrease are compatible with lakes water levels 
and sinkholes water levels compared to other methods, these trends are not statistically 
significant (Table 5). In addition, Table 6 and Fig. 20 show that trends in lakes and sink-
hole water levels are significant with changes in groundwater levels rather than precipita-
tion. Therefore, monitoring groundwater levels is more important for trend studies of lakes. 
Trends in lake levels are statistically consistent with trends in groundwater levels. While 
examining trend directions, groundwater level movement, given in Fig. 1 was taken into 
high consideration. When other studies in the literature are examined, the movement of 
groundwater levels supports this study (Recep and Tapur 2009; Doǧan and Yilmaz 2011; 
Günay et al. 2011).

Decreases in the groundwater levels cause the formation of many sinkholes in the 
region. The change in the groundwater level, especially the decreasing trend, causes the 
soluble rocks at contact with the water to be affected by dissolution, and as a result, to 
cause the formation of sinkholes. Sinkholes are getting closer to the city centers over time. 
Sinkholes formed in agricultural areas reduce the capacity, reliability and quality of the 
agricultural economy in the region (Demir et al. 2021).

In parametric methods, the actual value of the data in the series is important and this 
value is used in calculations. However, in non-parametric methods, not the actual value 
of the data, but the number of rows obtained by ordering the data from the smallest to the 
largest or from the largest to the smallest is used, and the data does not have to comply 
with the normal distribution (Helsel and Hirsch, 1992). Among the trend methods com-
pared, ST method and MMK method are non-parametric and LT method is parametric. The 

   Decreasing                             Increasing

PrecipitationEvaporation

Temperature

Decreasing ST

 Decreasing MMK

Decreasing LT

Increasing ST

Increasing MMK

Increasing LT

Fig. 20  Trend test results for same period
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advantage of the MMK method is that it is simple, takes into account serial correlation, 
and can be used in missing data. The disadvantage is that instead of the data, it determines 
the test value dependent on the sing function on the values ordered relative to each other. 
The advantage of the LT method is that it shows the general slope and uses the t distribu-
tion to determine the critical value. In cases where the number of data is less than 120, the 
t test is a special case of the Z test. When the number of data exceeds 120, the t-distribution 
can be seen as an advantage in this sense, similar to the Z-distribution (Demir 2018). The 
disadvantage is that it does not take into account the serial correlation and is useless in case 
of missing data. The advantage of the ST method is to deduce the overall trend and hidden 
sub-trends in various categories simultaneously on a furnished 1:1 trend plot. The flexible 
categorization of observations provides detailed information about the trend characteristics 
for each cluster. However, analysis of the significance or critical level of the trend attrib-
utes it to the distinctive persistence of hydrometeorological data. The ST method compares 
the test value with the critical value according to the variance methodology. This usually 
results in test results easily exceeding critical values and giving significant trends (Helsel 
and Hirsch 1992; Wang et al. 2019; Yagbasan et al. 2020).

5  Conclusions

In this study, the changes in the lake water levels and sinkhole water levels in the KCB 
were investigated by the change of meteorological parameters such as temperature, pre-
cipitation and evaporation. In the study, firstly, the homogeneity of the data was performed, 
and then trend analyzes were conducted. The homogeneity of the data was examined by the 
SNHT method. In trend analysis, MMK, LT and ST methods were used. All analyzes were 
performed at 95% of the confidence interval. As for the study period, it was first examined 
in the long term, which is the entire recording period, and then the parameters were exam-
ined in the same time period, and the following results were highlighted.

• As SNHT method was applied to data, it was observed that the precipitation, evap-
oration (except for Konya and Beyşehir evaporation data) and temperature data were 
homogeneous, and the lakes, sinkholes water levels and groundwater levels data were 
nonhomogeneous.

• When long-term trend analyses were performed on precipitation, lake, sinkhole and 
groundwater level data, the trend has not been determined in the homogeneous pre-
cipitation data, except for the ST method. In addition, the trends in nonhomogeneous 
lakes water levels, sinkholes water levels and groundwater levels were detected. This 
indicates that the trends are stronger in nonhomogeneous stations.

• The results of the MMK, ST and LT method trend analysis directions are similar. As a 
result of the recorded a long-term trend analysis, it was observed that the precipitation, 
lake and sinkhole water levels decreased. Groundwater levels, on the other hand, tend 
to increase in some stations, and decrease in some others.

• As a result of the above-mentioned analyses, it was determined that it is difficult to 
accurately determine the changes in lakes water levels and sinkholes water levels 
according to long-term precipitation. However, this issue can be explained by consider-
ing the same period for all data.
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• Finally, at the same and last periods, it was observed that the water levels of the Kızören 
Sinkhole and Timraş Sinkhole water levels decreased, while the water levels of Lake 
Tuz, and Lake Beyşehir increased. These results are supported by the trends of ground-
water level data of stations.

In summary, the trends of the meteorological parameters, lake water levels and sink-
holes water levels have significant effects on the country’s water resources management, 
agricultural and socio-economic activities. Serious groundwater level decreases have been 
detected in the region. These decreases can trigger the formation of many sinkholes in the 
region. Therefore, measures should be taken to assist lakes and sinkholes with adaptation 
to changing climatic conditions and reduce the negative effects.

Appendix 1: Correlation coefficients of the Kızören Sinkhole region

Karapınar P(mm) Cihan-
beyli P 
(mm)

Karapınar 
T (°C)

Cihan-
beyli T 
(°C)

Karapınar 
E (mm)

Cihan-
beyli E 
(mm)

Kızören 
WL (m)

Karapınar P 
(mm)

1.000

Cihanbeyli P 
(mm)

0.711 1.000

Karapınar T 
(°C)

 − 0.473  − 0.462 1.000

Cihanbeyli T 
(°C)

 − 0.491  − 0.499 0.992 1.000

Karapınar E 
(mm)

 − 0.467  − 0.467 0.942 0.930 1.000

Cihanbeyli E 
(mm)

 − 0.502  − 0.511 0.932 0.928 0.912 1.000

Kızören
WL (m)

0.051  − 0.008  − 0.094  − 0.154 0.005  − 0.083 1.000

Appendix 2: Correlation coefficients of Konya‑Selçuklu groundwater 
region

Konya P (mm) Konya T (°C) Konya E (mm) Selçuklu GWL (m)

Konya P (mm) 1.000
Konya T (°C)  − 0.534 1.000
Konya E (mm)  − 0.522 0.882 1.000
Selçuklu GWL (m) 0.032  − 0.070  − 0.007 1.000
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Appendix 4: Correlation coefficients of Timraş Sinkhole region

Çumra
P (mm)

Çumra
T (°C)

Çumra
E (mm)

Çumra
GWL (m)

Timraş
WL (m)

Çumra
P (mm)

1.000

Çumra
T (°C)

 − 0.573 1.000

Çumra
E (mm)

 − 0.580 0.954 1.000

Çumra
 GWL (m)

0.019  − 0.027  − 0.099 1.000

Timraş
WL (m)

 − 0.070 0.102 0.030 0.965 1.000

Appendix 5: Correlation coefficients of Beyşehir region

Beyşehir
P (mm)

Beyşehir
T (°C)

Beyşehir
E (mm)

Beyşehir
GWL (m)

Beyşehir
WL (m)

Beyşehir
P (mm)

1.000

Beyşehir
T (°C)

 − 0.559 1.000

Beyşehir
E (mm)

 − 0.557 0.944 1.000

Beyşehir
GWL (m)

0.086  − 0.030  − 0.088 1.000

Beyşehir
WL (m)

 − 0.141 0.035  − 0.022  − 0.032 1.000
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