Forecasting of streamflow and comparison of artificial intelligence methods: A case study for Meram Stream in Konya, Turkey

  • Yazar/lar ASAAD, Mustafa Najat
    ERYÜRÜK, Şule
    ERYÜRÜK, Kağan
  • Yayın Türü Makale
  • Yayın Tarihi 2022
  • Yayıncı MDPI
  • Tek Biçim Adres http://hdl.handle.net/20.500.12498/5896

The planning and management of water resources are affected by streamflow. The analysis of the sustainability of water resources has used well-grounded methods such as artificial neural networks, used for streamflow forecasting by researchers in recent years. The main aim of this study is to evaluate the performance of various methods for long-term forecasting from the data of the mean monthly streamflows between 1981 and 2017 from the Kucukmuhsine station on the Meram Stream in the Turkish province of Konya. For that reason, the multilayer perceptron (MLP), long short-term memory (LSTM), and adaptive neuro-fuzzy inference system (ANFIS) artificial intelligence techniques were employed in this study for the long-term forecasting of streamflow for 12 months, 24 months, and 36 months. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) were used to evaluate the performance of the models developed to make predictions using the data from 1981 to 2017, and the Mann-Whitney test was applied to examine the differences between the actual data from 2018 to 2020 and each model’s forecasted results for those three years. The LSTM model showed superiority based on the values of R2 (calculated as 0.730) and RMSE (lowest value of 0.510), whereas the MLP yielded better prediction accuracy as reflected by the value of MAE (lowest value of 0.519). The ANFIS model did not have the best prediction ability for any of the criteria. In accordance with the Mann-Whitney test results, LSTM and MLP indicated no significant difference between the actual data from 2018 to 2020 and the forecasted values; whereas, there was a significant difference for the ANFIS model at a confidence level of 95%. The results showed that the LSTM model had a better prediction performance, surpassing the MLP and ANFIS models, when comparing mean monthly streamflow forecasts.

Erişime Açık
Görüntülenme
7
22.03.2024 tarihinden bu yana
İndirme
1
22.03.2024 tarihinden bu yana
Son Erişim Tarihi
03 Mayıs 2024 21:40
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Forecasting of streamflow and comparison of artificial intelligence methods: A case study for Meram Stream in Konya, Turkey
Yayın Türü
(dc.type)
Makale
Yazar/lar
(dc.contributor.author)
ASAAD, Mustafa Najat
Yazar/lar
(dc.contributor.author)
ERYÜRÜK, Şule
Yazar/lar
(dc.contributor.author)
ERYÜRÜK, Kağan
Atıf Dizini
(dc.source.database)
Wos
Atıf Dizini
(dc.source.database)
Scopus
Yayıncı
(dc.publisher)
MDPI
Yayın Tarihi
(dc.date.issued)
2022
Kayıt Giriş Tarihi
(dc.date.accessioned)
2023-02-28T18:38:47Z
Açık Erişim tarihi
(dc.date.available)
2023-02-28T18:38:47Z
Özet
(dc.description.abstract)
The planning and management of water resources are affected by streamflow. The analysis of the sustainability of water resources has used well-grounded methods such as artificial neural networks, used for streamflow forecasting by researchers in recent years. The main aim of this study is to evaluate the performance of various methods for long-term forecasting from the data of the mean monthly streamflows between 1981 and 2017 from the Kucukmuhsine station on the Meram Stream in the Turkish province of Konya. For that reason, the multilayer perceptron (MLP), long short-term memory (LSTM), and adaptive neuro-fuzzy inference system (ANFIS) artificial intelligence techniques were employed in this study for the long-term forecasting of streamflow for 12 months, 24 months, and 36 months. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) were used to evaluate the performance of the models developed to make predictions using the data from 1981 to 2017, and the Mann-Whitney test was applied to examine the differences between the actual data from 2018 to 2020 and each model’s forecasted results for those three years. The LSTM model showed superiority based on the values of R2 (calculated as 0.730) and RMSE (lowest value of 0.510), whereas the MLP yielded better prediction accuracy as reflected by the value of MAE (lowest value of 0.519). The ANFIS model did not have the best prediction ability for any of the criteria. In accordance with the Mann-Whitney test results, LSTM and MLP indicated no significant difference between the actual data from 2018 to 2020 and the forecasted values; whereas, there was a significant difference for the ANFIS model at a confidence level of 95%. The results showed that the LSTM model had a better prediction performance, surpassing the MLP and ANFIS models, when comparing mean monthly streamflow forecasts.
Yayın Dili
(dc.language.iso)
en
Haklar
(dc.rights)
Attribution-NonCommercial-NoDerivs 3.0 United States
Tek Biçim Adres
(dc.identifier.uri)
http://hdl.handle.net/20.500.12498/5896
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve cerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms